technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Displaying 1 - 10 of 169
The rapid detection of pathogens and other microbial contaminants in food and biological samples is critical for ensuring the safety of consumers. Traditional methods to detect foodborne bacteria often rely on time-consuming growth in culture media, followed by isolation, biochemical identification, and sometimes serology. The enzyme-linked immunosorbent assay (ELISA) is the…
Spinal Cord Injury (SCI) can result in catastrophic loss of function. In the US, 450,000 people live with SCI. Ongoing neuroscience research focuses on ways to improve nervous tissue regeneration, including development of innovative biomaterials. Implantable scaffolds composed of aligned polymer fibers have shown considerable promise in directing regenerating axons in vitro…
Detecting differences at the cellular level is an ongoing problem which, if successfully addressed, could help solve several prevalent ailments, including cancers and prenatal diseases. Normal tissue function requires appropriate cell positioning and directional motion. This property, known as chirality, can be altered by genetic and environmental factors, leading to, for…
Standard interfacial polymerization and phase inversion based-membranes are complex, sensitive to small changes, susceptible to residual chlorine, and have rough surfaces enabling unfavorable adsorption. There is an urgent need to improve synthetic membrane filtration performance for systems which recover biofuels in energy production and desalinize sea and brackish water for…
The cross-section of an X-ray phase shift image is a thousand times greater than that of X-ray attenuation in soft tissue over the diagnostic energy range implying phase imaging can achieve a much higher signal-to-noise ratio and substantially lower radiation dose than attenuation-based X-ray imaging. Grating interferometry is a state of the art X-ray imaging approach, which…
Alkaline exchange membranes (AEMs), also called anion exchange membranes, allow transportation of anions (ex: OH-, Cl-, Br-, etc.) from the cathode to the anode in electrochemical reaction. AEMs are the most critical component of AEM fuel cells, water electrolysis, and certain batteries, sensors, and actuators. Many AEM materials tend to degrade easily under high alkaline.…
Solid state radiation detectors, such as neutron detectors and gamma ray detectors, have been proposed as alternatives to gas-tube based detectors. Radiation-detecting hetero-structures may be formed by using physical etching processes, such as reactive ion etching (RIE) to form trenches in a semiconductor substrate, followed by using chemical vapor deposition (CVD) to…
The intelligent control of lighting has the potential to bring benefits in energy consumption, human comfort and well-being, and worker productivity. Existing systems have various drawbacks including: (1) they often only detect the presence of people, and not their number and spatial distribution in the room; and (2) they typically use cameras or other high resolution sensors…
Current DRAM chips can ensure error-free data storage (except for radiation-induced soft errors), which largely simplifies the overall computing system design. Each DRAM cell contains one transistor and one capacitor. Unfortunately, it becomes increasingly challenging to maintain the sufficiently large capacitance (hence error-free data storage). It has become clear that STT…
Antibiotic resistance is increasing at an alarming rate, especially in the case of M. tuberculosis. Alternatives to traditional antibiotics are urgently needed to combat these resistant bacteria. Disrupting bacterial, but not mammalian, outer-membrane integrity with peptides is one such strategy to destroy toxic bacteria in a highly selective manner. Design strategies to…