Thermally Stable Hydrocarbon-based Anion Exchange Membrane and Ionomers

Researchers at RPI have developed a prototype hydrocarbon-based membrane for use in AE fuel cells and electrolyzers. This membrane can operate in a stable manner at elevated temperatures with the potential to provide enhanced operational performance. This membrane could possibly effectively participate in the growing fuel cell/electrolyzer market, as tested, the DPE membrane provides increased Tg values as compared to non-functionalized PS materials and increased Tg values as compared to main chain Nafion-117.

Directed evolution for Membranes Development in 3 Dimensions

Researchers at Rensselaer Polytechnic Institute (RPI) created a 3D computer simulation tool to assess the behavior/interaction of a hydrophobic membrane material with waste/feed water particles to assist membrane manufacturers/end-users in identifying a high performing membrane filtration/separation system. This simulation protocol could represent a viable, more cost-effective technique for membrane system designers within the wastewater treatment, desalination, food processing, pharmaceutical biotech, and oil/gas industries.


The rapid detection of pathogens and other microbial contaminants in food and biological samples is critical for ensuring the safety of consumers. Traditional methods to detect foodborne bacteria often rely on time-consuming growth in culture media, followed by isolation, biochemical identification, and sometimes serology. The enzyme-linked immunosorbent assay (ELISA) is the most prevalent antibody assay format used for pathogen detection in foods.

Coated Aerogel Beads

Coating particulate material can often enhance the physical and chemical properties of the material including improved insulation properties, improved abrasion resistance, and improved strength. However, coated particulate materials are often porous and tend to absorb gases and liquids, which destroy the material, or at the very least, interfere with its insulating properties. This invention is directed to an improved device for coating particulate material.

High Affinity, Low-Molecular-Mass Displacers for Ion-Exchange Chromatography

Interest in biomolecules including proteins and oligonucleotides has exploded in recent years, but while supplies of raw materials are relatively abundant, an ongoing problem encountered is separation andor purification of these materials. Displacement chromatography can be used to perform such difficult separations in an efficient and cost effective manner.

Synthetic membranes and methods of use thereof

Standard interfacial polymerization and phase inversion based-membranes are complex, sensitive to small changes, susceptible to residual chlorine, and have rough surfaces enabling unfavorable adsorption. There is an urgent need to improve synthetic membrane filtration performance for systems which recover biofuels in energy production and desalinize sea and brackish water for potable use. This technology includes a new class of tunable, selective, synthetic membranes and process of making thereof, which outperform commercially available membranes.

Anti-microbial peptides and method for designing novel anti-microbial peptides

Antibiotic resistance is increasing at an alarming rate, especially in the case of M. tuberculosis. Alternatives to traditional antibiotics are urgently needed to combat these resistant bacteria. Disrupting bacterial, but not mammalian, outer-membrane integrity with peptides is one such strategy to destroy toxic bacteria in a highly selective manner. Design strategies to develop potent, stable antimicrobial peptides stemming from a fundamental understanding of their mechanism of cell disruption are urgently needed.


Hollow gold nanoparticles, also known as gold nanocages, are effective vehicles for the transport and administration of therapeutic agents, bioactive compounds, biomolecular reagents, biocatalysts, and other molecular compounds of interest. However, better control of the bioavailability of gold nanocages content is needed. The patent describes a gold nanocage with pores, charged ligand molecules covalently bound to internal surfaces of the gold nanocage, and payload molecules electrostatically adsorbed onto the charged ligand molecules.