MULTIPLEX DETECTION OF BACTERIAL PATHOGENS VIA CELL WALL BINDING DOMAIN COMPLEXES

The rapid detection of pathogens and other microbial contaminants in food and biological samples is critical for ensuring the safety of consumers. Traditional methods to detect foodborne bacteria often rely on time-consuming growth in culture media, followed by isolation, biochemical identification, and sometimes serology. The enzyme-linked immunosorbent assay (ELISA) is the most prevalent antibody assay format used for pathogen detection in foods.

Coated Aerogel Beads

Coating particulate material can often enhance the physical and chemical properties of the material including improved insulation properties, improved abrasion resistance, and improved strength. However, coated particulate materials are often porous and tend to absorb gases and liquids, which destroy the material, or at the very least, interfere with its insulating properties. This invention is directed to an improved device for coating particulate material.

High Affinity, Low-Molecular-Mass Displacers for Ion-Exchange Chromatography

Interest in biomolecules including proteins and oligonucleotides has exploded in recent years, but while supplies of raw materials are relatively abundant, an ongoing problem encountered is separation andor purification of these materials. Displacement chromatography can be used to perform such difficult separations in an efficient and cost effective manner.

Synthetic membranes and methods of use thereof

Standard interfacial polymerization and phase inversion based-membranes are complex, sensitive to small changes, susceptible to residual chlorine, and have rough surfaces enabling unfavorable adsorption. There is an urgent need to improve synthetic membrane filtration performance for systems which recover biofuels in energy production and desalinize sea and brackish water for potable use. This technology includes a new class of tunable, selective, synthetic membranes and process of making thereof, which outperform commercially available membranes.

Anti-microbial peptides and method for designing novel anti-microbial peptides

Antibiotic resistance is increasing at an alarming rate, especially in the case of M. tuberculosis. Alternatives to traditional antibiotics are urgently needed to combat these resistant bacteria. Disrupting bacterial, but not mammalian, outer-membrane integrity with peptides is one such strategy to destroy toxic bacteria in a highly selective manner. Design strategies to develop potent, stable antimicrobial peptides stemming from a fundamental understanding of their mechanism of cell disruption are urgently needed.

INTERNALIZATION OF PROTEINS INTO HOLLOWED GOLD NANOSTRUCTURES

Hollow gold nanoparticles, also known as gold nanocages, are effective vehicles for the transport and administration of therapeutic agents, bioactive compounds, biomolecular reagents, biocatalysts, and other molecular compounds of interest. However, better control of the bioavailability of gold nanocages content is needed. The patent describes a gold nanocage with pores, charged ligand molecules covalently bound to internal surfaces of the gold nanocage, and payload molecules electrostatically adsorbed onto the charged ligand molecules.

Aminoglycoside-Polyamine Displacers for Displacement Chromatography

Displacement chromatography has attracted signifcant attention as a powerful technique for the purification of bioherapeutic proteins and oligunucleotides. Displacement chromatography enables simultaneous concentration and purification in a single step, which is significant in the purifcation of biopharmaceuticals. However, the major obstacle in implementing this technique is the lack of a sufficient diversity of appropriate displace candidates that are applicable across a wide spectrum of bioseparation demands.

IN VITRO METABOLIC ENGINEERING ON MICROSCALE DEVICES

After discovering that a natural product has a particular, useful biological activity, it is desirable to prepare analogs of the natural product. However, natural products and their analogs are typically complex molecules requiring multi-step syntheses that are usually laborious, costly, and time consuming. This invention is directed to a microfluidics device that can be used to prepare natural products and their analogs.

SOLID-PHASE ARRAY-BASED BIOCATALYTIC TRANSFORMATIONS

This invention is directed to a step-wise enzymatic synthesis of combinatorial libraries of polymeric compounds prepared on a solid support in a configuration suitable for high-throughput screening for use in drug discovery and related fields. This invention provides compositions and methods for generating and screening libraries of phenolicanilinic polymers (and their related quinine forms) attached to a suitable surface and synthesized using enzymatic catalysis.