Mobile Human-Friendly Assistive Robot

Researchers at Rensselaer created a robotic assistant that is more versatile, cheaper, and which can be remotely controllable by anyone whose mobility is impaired. The disclosed robotic assistant generally comprises a motorized base and dual arm robot mounted thereon. The robotic assistant is designed to be utilized by mobility impaired individuals through a sip-and-blow interface, tongue command device, eye/blink tracker, a joystick, etc., to, e.g., command the motion of the assistant to pick up objects from floor or shelf, to inspect suspicious noise, etc.

UVB, Artificial Sunlight Device for Vitamin-D Production

Unlike vitamin D supplements, phototherapy provides a more natural means of vitamin D production. While research has shown that the vitamin D received from supplements is functionally equivalent to that synthesized from natural sunlight, evidence suggests that vitamin D sourced from sunlight remains active in our bodies longer than vitamin D derived from dietary supplements. Studies have further demonstrated that compared to natural sunlight, UVB LEDs are more efficient and more effective in producing vitamin D3 in skin.

Acoutic Attenuators Based On Porous Nanostructured Materials

This technology relates to sound absorption material. Reduction of noise in the environment is important for avoiding hearing loss and for improving psychological health in humans. This technology provides sound absorbing composition that includes particles embedded in a network of nanofibers. The composition contains pores ranging in size from less than 10 nm to more than one micron in diameter and exhibits acoustic transmission loss ranging from 20 to 60 dBcm thickness of the composition.

Decorrelating Audio Signals for Stereophonic and Surround Sound Using Coded and Maximum-Length-Class Sequences

This technology relates to the decorrelation of audio signals for use in surround sound techniques. Decorrelation improves listener envelopment and spatial immersion, but prior techniques suffer from unwanted timbre coloration and are computationally expensive. The present technology improves decorrelation by utilizing a pseudorandom sequence and a reciprocal of the pseudorandom sequence to convolve the audio signal into the desired number of output signals.