Apparatus and manufacturing method for in-situ impregnation of continuous fiber tows with thermoplastic resin for use in additive manufacturing.

Using raw materials (thermoplastic pellets and rolls of fiber tows), this invention will continuously impregnate fiber tows with molten thermoplastic resin for fabrication of custom composite shapes, unlike current methods, which do not use raw materials and are extremely expensive processes. The ‘In Situ’ process can be used to either directly “print” composite parts in an additive manufacturing approach or to manufacture pre-impregnated (prepreg) composite material for use in other manufacturing technologies.

Orbital Debris Capture and Deorbit System for Nanosatellites

Rensselaer inventors created a multi-launch system and capture method to effectively clean up debris in a cost-effective manner. Operationally, the method consists of deploying a small-sized object called the CubeSat. This is a small satellite with a low mass and can be part of the launch of another larger satellite or other space-based object. The CubeSat is launched into space at the same orbit as the main payload. From there, it uses its built-in capabilities to maneuver itself to the desired orbit where space debris of the right size are present that need to be captured and destroyed.

Pinned-contact oscillating liquid lens and imaging system

Existing liquid lense optical focusing strategies use liquid lenses after transient oscillations have dampened. The challenge with this existing liquid lens approach is two-fold. The first issue is to overcome the liquid inertia to enable a rapid state change, and the second, is to minimize the time it takes for transients induced during stoppage to Subside. Many systems use brute force activation methods to effect a shape change, creating undesired transient motion, which then necessitates a high-dissipative media to dampen them out.

High thermal conductance thermal interface materials based on nanostructured metallic-network polymer composites

This technology relates to a high thermal conductivity thermal interface material that allows for the formation of an interconnected, spanning, high thermal conductivity network within the matrix of a polymeric material using nano particles. This material can yield two orders of magnitude higher thermal conductivities than the non-network counterpart, as well as factorial enhancements versus the state of the art polymer composites.

Piezoelectric Driven Oscillating Surface

This technology relates to active flow control using an active roughness actuator. The active roughness actuator includes a surface having an aperture; a compliant layer covering the aperture; a chamber containing a fluid and a piezoelectric surface mechanically coupled to the chamber. The chamber is in fluid communication with the compliant layer via the at least one aperture. The piezoelectric surface is configured to displace the fluid in the chamber to control production of at least one dimple in the compliant layer proximate to the at least one aperture.

PINNED-CONTACT, OSCILLATING LIQUID-LIQUID LENS AND IMAGING SYSTEMS

This technology relates to liquid lenses, which are adaptive optical elements that avoid some of the drawbacks of mechanical optical elements, such as delayed movements and excess weight. This technology provides an oscillating liquid lens that includes a liquid drop with first and second droplet portions, a second liquid, and a drive that oscillates the liquid drop within a channel of a substrate.

On-Hardware Optimization of Stepper-Motor System

This invention is directed to a method to improve the performance of stepper motor driven systems.Stepper motors are ubiquitous in modern office equipment and other machinery, yet little is published regarding their optimal use in open loop systems.Accurate control of a stepper motor is limited by the ability of the control system to approximate the actual motor and subsequently provide the correct instructions for achieving the actual desired movement with little or no error.Moving the motor to a specific position within a specified time period is difficult due to variations between motors

TERAHERTZ IMAGING WITH DYNAMIC APERTURE

Terahertz (THz) waves occupy a segment of the electromagnetic spectrum between the infrared and microwave bands. As such, they can be used for imaging and sensing in ways that are not possible with conventional technologies such as X-ray and microwave. Because THz radiation transmits through almost anything that is not metal or liquid, the waves can see through most materials that might be used to conceal explosives or other materials, such as packaging, corrugated cardboard, clothing, shoes, backpacks, and book bags. They are also safer than X-rays and microwaves for human tissue.

DEVICE FOR MECHANICAL WEIGHT BEARING INDICATION WITH LOAD RANGE CAPABILITY

Many times following orthopedic surgery or injury to lower extremeties patients are advised to gradually bear weight on their limb. Since patients do not want to cause further damage or pain to the injury they put little to no weight on the area. The application is necessary, however, for proper recovery. This invention is a mechanical device that indicates to the patient when a first level of weight is applied. So, this encourages them to step firmly enough to reach this level without fear that they are going to hurt themselves or cause pain.