Invention Title Ultrasound Imaging and Deep Learning Methods and Apparatus for Multi-dimensional image-based Biomarkers

Researchers at Rensselaer Polytechnic Institute are developing a non-invasive and user-friendly wearable device for monitoring blood pressure, blood glucose, and biomarkers, which could improve quality of life, decrease healthcare expenditures, and allow for early intervention for potentially serious health events. Currently, a major area is interest within the medical wearable device industry is the real-time monitoring of blood pressure. More than 100 million adults in the United States and a third of the worldwide population suffer from high blood pressure.

Optical Reservoir Computing for Lung Tumor Movement Prediction in Radiation Therapy Applications

"Researchers at RPI developed an optical reservoir computer (ORC) with commercial off-the-shelf components to predict lung tumor motion during radiotherapy. The technology could improve radiation therapy outcomes and yield applications for other imaging modalities. The ORC shows comparable motion prediction accuracy and error rates to traditional neural networks (long short-term memory (LSTM), Multi-Layer Perceptron Neural Network (MLP-NN), and Adaptive Boosting and Multi-Layer Perceptron Neural Network (ABMLP-NN)).

Apparatus and manufacturing method for in-situ impregnation of continuous fiber tows with thermoplastic resin for use in additive manufacturing.

Using raw materials (thermoplastic pellets and rolls of fiber tows), this invention will continuously impregnate fiber tows with molten thermoplastic resin for fabrication of custom composite shapes, unlike current methods, which do not use raw materials and are extremely expensive processes. The ‘In Situ’ process can be used to either directly “print” composite parts in an additive manufacturing approach or to manufacture pre-impregnated (prepreg) composite material for use in other manufacturing technologies.

Machine learning to correct for nonphotochemical quenching in high-frequency, in vivo fluorometer data

Nonphotochemical quenching (NPQ) is a response mechanism in plants and algae that allows them to process and dissipate excess excitation energy as heat safely. Collecting fluorescence data from these plants and algae in surface water environments can incur errors from NPQ, ultimately leading to inaccurate calculations of chlorophyll concentration for environmental and industrial water quality monitoring. Rensselaer inventors developed a novel approach to correcting NPQ-skewed fluorescence data by employing trained machine-learning modules that can be applied to fluorescence detection system

Nanoparticle-enabled X-ray Magnetic Resonance Imaging (NXMR)

Researcher Ge Wang and team created imaging systems and methods using excited nanoparticles coupled between CT and MRI to provide faster localization information for targeted, high resolution imaging. The study of biological systems is a complex pursuit that requires sufficient models and tools to measure responses to controlled changes in the system, however, there has been a lack of appropriate microscopy allowing insight into deep 3D models of molecular and cellular function due to the diffusive properties of optical light. Wang and his team overcame limitations in the field by using nan

Directed evolution for Membranes Development in 3 Dimensions

Researchers at Rensselaer Polytechnic Institute (RPI) created a 3D computer simulation tool to assess the behavior/interaction of a hydrophobic membrane material with waste/feed water particles to assist membrane manufacturers/end-users in identifying a high performing membrane filtration/separation system. This simulation protocol could represent a viable, more cost-effective technique for membrane system designers within the wastewater treatment, desalination, food processing, pharmaceutical biotech, and oil/gas industries.

Use of E.coli co-cultures for the production of flavonoids

Metabolic engineering and synthetic biology have enabled the use of microbial production platforms for the renewable production of many high-value natural products. Titers and yields, however, are often too low to result in commercially viable processes. Microbial co-cultures have the ability to distribute metabolic burden and allow for modular specific optimization in a way that is not possible through traditional monoculture fermentation methods. Rensselaer Inventors created a new type of E.

UVB, Artificial Sunlight Device for Vitamin-D Production

Unlike vitamin D supplements, phototherapy provides a more natural means of vitamin D production. While research has shown that the vitamin D received from supplements is functionally equivalent to that synthesized from natural sunlight, evidence suggests that vitamin D sourced from sunlight remains active in our bodies longer than vitamin D derived from dietary supplements. Studies have further demonstrated that compared to natural sunlight, UVB LEDs are more efficient and more effective in producing vitamin D3 in skin.

3D FEW-VIEW CT IMAGE RECONSTRUCTION FROM PROJECTION DATA

Inventors at RPI have invented a technology that can overcome the issues seen in few-view CT scans. CT scans use a large number of X-rays exposing the patient to ionizing radiation during this procedure. Though the risk of cancer from a CT scan might be extremely low, there is still a concern that the combined risks of scanning for diagnoses and/or treatment could lead to a greater number of cancers in the future. Few-view CT image reconstruction is an important approach to reduce the ionizing radiation dose.

UNAFold version 4.0

Based on the famous ""mfold"", the UNAFold software package is an integrated collection of programs that simulate nucleic acid folding and hybridization, and its melting pathways for one or two single-stranded molecules. The package predicts folding for single-stranded RNA or DNA through combination of free energy minimization, partition function calculations and stochastic sampling. For melting simulations, the package computes entire melting profiles, not just melting temperatures.