Directed evolution for Membranes Development in 3 Dimensions

Researchers at Rensselaer Polytechnic Institute (RPI) created a 3D computer simulation tool to assess the behavior/interaction of a hydrophobic membrane material with waste/feed water particles to assist membrane manufacturers/end-users in identifying a high performing membrane filtration/separation system. This simulation protocol could represent a viable, more cost-effective technique for membrane system designers within the wastewater treatment, desalination, food processing, pharmaceutical biotech, and oil/gas industries.

Synthetic membranes and methods of use thereof

Standard interfacial polymerization and phase inversion based-membranes are complex, sensitive to small changes, susceptible to residual chlorine, and have rough surfaces enabling unfavorable adsorption. There is an urgent need to improve synthetic membrane filtration performance for systems which recover biofuels in energy production and desalinize sea and brackish water for potable use. This technology includes a new class of tunable, selective, synthetic membranes and process of making thereof, which outperform commercially available membranes.

Anti-microbial peptides and method for designing novel anti-microbial peptides

Antibiotic resistance is increasing at an alarming rate, especially in the case of M. tuberculosis. Alternatives to traditional antibiotics are urgently needed to combat these resistant bacteria. Disrupting bacterial, but not mammalian, outer-membrane integrity with peptides is one such strategy to destroy toxic bacteria in a highly selective manner. Design strategies to develop potent, stable antimicrobial peptides stemming from a fundamental understanding of their mechanism of cell disruption are urgently needed.

UV-ASSISTED GRAFTING OF PES AND PSF MEMBRANES

Ultrafiltration (UF) membranes have found widespread use in the food and biotechnology industries. UF has been applied in the processing of normal and transgenic milk, cheese and eggs, whey and potato protein recovery, the clarification of juices and wine, the recovery of proteins from animal blood, and the purification of water. UF is also used in the biotechnology industry for the recovery of biological products through such steps as cell broth clarification, cell harvesting, concentration or diafiltration of protein solutions prior to separation, and final concentration.