THREE-DIMENSIONAL FACE-TO-FACE INTEGRATION ASSEMBLY

Todays integrated circuits often can include millions of integrated components and devices. However, for a given product, it sometimes is not possible to achieve on one chip all of the circuitry required. A major challenge then becomes the interconnection of the circuitry on mulitple chips or substrates while keeping the connection resistance low and path lengths short to minimize inductive and capacitive effects, permitting high speed operation. Thus, a structure and method of forming compact integrated circuit assemblies and interconnections is needed.

FABRICATING RADIATION-DETECTING STRUCTURES

Solid state radiation detectors, such as neutron detectors and gamma ray detectors, have been proposed as alternatives to gas-tube based detectors. Radiation-detecting hetero-structures may be formed by using physical etching processes, such as reactive ion etching (RIE) to form trenches in a semiconductor substrate, followed by using chemical vapor deposition (CVD) to deposit radiation-detecting material within the formed trenches.

ORGANIC PHOSPHOR-FUNCTIONALIZED NANOPARTICLES AND COMPOSITIONS COMPRISING THE SAME

This technology relates to nanoparticles that are particularly beneficial in optical systems. The nanoparticles include phosphor-functionalized particles with an inorganic nanoparticle core, surface polymer brushes in the form of long and short-chain polymers bonded to the inorganic nanoparticle core, and organic phosphors bonded to the inorganic nanoparticle core or the short-chain polymers. Applications for this technology include LEDs, lighting devices, fixtures, efficient light conversion materials, etc.

Silicone Based Nanocomposites Including Inorganic Nanoparticles and Their Methods of Manufacture and Use

Rensselaer researchers have developed a thermodynamically stable dispersion technology resulting in thick, transparent, high refractive index silicone nanocomposites that increase the light efficiency of LEDs and improve the emitted light color quality. The nanocomposites could also be processed as transparent bulk material with high filler loading, which is essential for optical, magnetic and biomedical applications.

Nanoparticles with Multiple Attached Polymer Assemblies and Use Thereof in Polymer Composites

This technology relates to synthesizing nanoparticles with multiple polymer assemblies attached. In one example, a first anchoring compound is attached to a nanoparticle, and a first group of monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another example, a first polymeric chain can be attached to the nanoparticle, where the first polymeric chain has been polymerized prior to attachment to the nanoparticle.

VINYL ETHER FUNCTIONAL OLIGOMERS AND METHODS FOR MAKING AND USING SAME

This technology relates to a photopolymerizable class of vinyl ether oligomers which can find application in the areas of coatings, adhesives, printing inks, photoresists and high impact composites. The versatile photopolymerization capability makes these oligomers an excellent strategic candidate for shrinkage control coatings in place of acrylates. These oligomers include photopolymerizable functional groups which manifests excellent uniform film forming characteristics when cured by UV or electron beam radiation.

High thermal conductance thermal interface materials based on nanostructured metallic-network polymer composites

This technology relates to a high thermal conductivity thermal interface material that allows for the formation of an interconnected, spanning, high thermal conductivity network within the matrix of a polymeric material using nano particles. This material can yield two orders of magnitude higher thermal conductivities than the non-network counterpart, as well as factorial enhancements versus the state of the art polymer composites.

TUNABLE NANOPOROUS FILMS ON POLYMER SUBSTRATES, AND METHOD FOR THEIR MANUFACTURE

This technology relates to fabricating tunable refractive index nanoporous thin films on flexible polymer substrates. The refractive index of the nanoporous thin film can be tuned during fabrication to a designed vale by adjusting the porosity of the thin optical film. Experiments show that thin-film SiO2 with tunable porosity fabricated by oblique angle electron beam deposition can be deposited on polymer substrates. Further, these SiO2 thin films show remarkably good adhesion to the polymer substrate.

Nanofilled Polymeric Nanocomposites with Tunable Index of Refraction

This technology relates to nanofilled polymeric materials with a tunable refractive index without increased scattering or loss. The tunability allows the creation of hybrid nanocomposites that combine the advantages of organic polymers (low weight, flexibility, good impact resistance, and excellent processability) and inorganic materials (high refractive index, good chemical resistance and high thermal stability).

Highly ordered TiO2 and PtTiO2 nanocomposites for advanced catalytic applications

This technology relates to supports for catalytically active material, particularly for CO oxidation and lean burn deNOx control. There is a need for synthesis routes for supported catalyst that allow for formation of patterned and interconnected porous supports with catalyst nanoparticles of controllable size distributed throughout the support structure. The present technology includes a catalyst composite where both the support and the catalyst are synthesized using the same soft template, at room temperature.