technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 62
Behavioral biometrics tools identify users with keystroke dynamics, signature verification, voice recognition, and gesture recognition. These technologies compare a profile of the users against a database created with contextual information, including physiological, cognitive, and contextual traits. Institutions of higher education, governments, and financial institutions use…
Researchers at Rensselaer have created a technology that combines different modules of an LED light fixture into a single component that can be 3D printed. Combining the modules into a single 3D printed component could decrease overall LED light fixture manufacturing/production costs, reduce required labor for product assembly, and reduce the number of parts necessary to…
Unlike vitamin D supplements, phototherapy provides a more natural means of vitamin D production. While research has shown that the vitamin D received from supplements is functionally equivalent to that synthesized from natural sunlight, evidence suggests that vitamin D sourced from sunlight remains active in our bodies longer than vitamin D derived from dietary supplements.…
Commonly implanted medical devices containing metal parts (i.e., dental fillings, coils, hip replacements) generate streaks in computed tomography (CT) images, thereby impeding diagnosis and interfering with radiation therapy planning. Inventors at RPI created a novel technique to boost the efficacy of neural networks for metal artifact reduction (MAR) in CT images. Currently…
Inventors at RPI have invented a technology that can overcome the issues seen in few-view CT scans. CT scans use a large number of X-rays exposing the patient to ionizing radiation during this procedure. Though the risk of cancer from a CT scan might be extremely low, there is still a concern that the combined risks of scanning for diagnoses and/or treatment could lead to a…
Researchers at Rensselaer Polytechnic Institute are developing a non-invasive and user-friendly wearable device for monitoring blood pressure, blood glucose, and biomarkers, which could improve quality of life,  decrease healthcare expenditure, and allow for early intervention for potentially serious diseases.    Currently, a major area of interest within the medical…
Strokes are one of the primary sources of long-term disability with billions in annual direct and indirect costs to the United States healthcare system. Nearly one-third of all strokes occur in patients with clogged carotid arteries. Carotid artery imaging types include digital subtraction angiography (DSA), duplex ultrasonography (DUS), CT angiography, and MR angiography.…
Rensselaer inventors created a nanocomposite fiber that promotes quick coagulation during hemorrhage resulting in reduced mobility and improved survival. The nanofiber composite is comprised of halloysite nanoclay, a natural occurring aluminosilicate nanoclay that exhibits a hollow tubular scroll structure. Hemostatic products on the market are effective in the short-term but…
Hybrid imaging combines different imaging modalities to obtain information from both systems, such as anatomy and physiology through MRI while leveraging tools available for X-ray fluoroscopy. Hybrid image systems could offer the benefits of increased diagnostic accuracy, faster examinations, and a better understanding of different medical professions. Current medical imaging…
Spinal Cord Injury (SCI) can result in catastrophic loss of function. In the US, 450,000 people live with SCI. Ongoing neuroscience research focuses on ways to improve nervous tissue regeneration, including development of innovative biomaterials. Implantable scaffolds composed of aligned polymer fibers have shown considerable promise in directing regenerating axons in vitro…