Nanoparticle-enabled X-ray Magnetic Resonance Imaging (NXMR)

Researcher Ge Wang and team created imaging systems and methods using excited nanoparticles coupled between CT and MRI to provide faster localization information for targeted, high resolution imaging. The study of biological systems is a complex pursuit that requires sufficient models and tools to measure responses to controlled changes in the system, however, there has been a lack of appropriate microscopy allowing insight into deep 3D models of molecular and cellular function due to the diffusive properties of optical light. Wang and his team overcame limitations in the field by using nan

Low-dimensional manifold constrained disentanglement network for metal artifact reduction in CT images

Commonly implanted medical devices containing metal parts (i.e., dental fillings, coils, hip replacements) generate streaks in computed tomography (CT) images, thereby impeding diagnosis and interfering with radiation therapy planning. Inventors at RPI created a novel technique to boost the efficacy of neural networks for metal artifact reduction (MAR) in CT images. Currently, deep neural network-based techniques need to be trained on synthetic, paired images. Unfortunately, these images may not accurately reflect clinical reality and technical factors.

X-RAY PHASE-CONTRAST IMAGING

The cross-section of an X-ray phase shift image is a thousand times greater than that of X-ray attenuation in soft tissue over the diagnostic energy range implying phase imaging can achieve a much higher signal-to-noise ratio and substantially lower radiation dose than attenuation-based X-ray imaging. Grating interferometry is a state of the art X-ray imaging approach, which can simultaneously acquire information of X-ray phase-contrast, dark-field, and linear attenuation. This imaging modality can reveal subtle texture of tissues.

Attenuation Map Reconstruction From TOF PET Data

Time of flight PET (TOF-PET) is an advance over traditional PET that uses the time difference in detection of the two photon events. TOF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. This technology uses a direct estimation of the sinogram only from TOF PET data.

Computed Tomography Based on Linear Scanning

Computed Tomography (CT) is an important tool in diagnostic imaging. It plays a key role in diagnosis and intervention. Many advanced CT systems use wide detector arrays, multiple sources, andor very fast rotation speed, for important clinical applications (e.g., coronary artery and whole organ perfusion imaging). As a result, modern CT scanners are expensive and are typically used by major hospitals and clinics in developed countries. Over the past decades, CT systems or methods have been proposed assuming linear translation-based scanning.