Computed Tomography (CT) is an important tool in diagnostic imaging. It plays a key role in diagnosis and intervention. Many advanced CT systems use wide detector arrays, multiple sources, andor very fast rotation speed, for important clinical applications (e.g., coronary artery and whole organ perfusion imaging). As a result, modern CT scanners are expensive and are typically used by major hospitals and clinics in developed countries. Over the past decades, CT systems or methods have been proposed assuming linear translation-based scanning. These include a linear scan-based dental CT approach, a translation-based CT data acquisition method for imaging of a cable channel inside the corner formed by two walls in a building, and a linear scan CT system with a wide fan-angle source, a large-area detector, and an advanced image reconstruction algorithm. None of these proposed systems use interior tomography or are capable of ultra-low-cost CT in the case of general dose-effective medical applications. The data acquisition system developed here can target a region of interest (ROI) to acquire data, which can be limited andor truncated data. The source and detector can be translated in opposite or approximately opposite directions. It can be used for ROI reconstruction with one or more localized linear scans, or global reconstruction by combining multiple ROI reconstructions. A slip ring that is often used in related art systems can be replaced by a translation-based setup, and the instrumentation cost is reduced by a relaxation of the imaging speed requirement. A system of the subject invention can be tailored into permanent, movable, or reconfigurable systems as desired. Advanced image registration and spectral imaging features can be included as well.