technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 14
Rensselaer researchers have developed a thermodynamically stable dispersion technology resulting in thick, transparent, high refractive index silicone nanocomposites that increase the light efficiency of LEDs and improve the emitted light color quality. The nanocomposites could also be processed as transparent bulk material with high filler loading, which is essential for…
This technology relates to synthesizing nanoparticles with multiple polymer assemblies attached. In one example, a first anchoring compound is attached to a nanoparticle, and a first group of monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another example, a…
This technology relates to nanofilled polymeric materials with a tunable refractive index without increased scattering or loss. The tunability allows the creation of hybrid nanocomposites that combine the advantages of organic polymers (low weight, flexibility, good impact resistance, and excellent processability) and inorganic materials (high refractive index, good chemical…
This technology relates to a process for creating electrodes in which high-surface area nanostructures are fabricated in situ by electrochemically etching a sacrificial scaffold material. Removing a material after it has been built into the cell opens up pores within the electrode whose size and density can be controlled, resulting in higher efficiency and Pt utilization.…
Many envisioned carbon nanotube (CNT) applications, such as device interconnections in integrated circuits, require directed growth of aligned CNTs, and low-resistance high-strength CNT junctions with tunable chemistry, stability, and electronic properties. However, forming CNT-CNT junctions on the substrate plane in a scalabe fashion, to enable in-plane device circuitry and…
Oxide glasses with earth ions have a number of different applications including: lasers, optical switches, optical amplifiers and have anti-glare properties. These rare earth glasses, however, come with a number of problems including concentration quenching, low solubility, and inhomogenous distributions of the glass components. This invention tackles these issues by providing…
Isolating individual components of nanoscale architectures comprised of thin films or nanostructures, without significantly impacting their functionalities, is a critical challenge in micro- and nano-scale device fabrication. One example that illustrates this challenge is seen in Cu interconnect structures for nanometer devices. These devices use interfacial barrier nanolayers…
The crystalline lenses of the eyes undergo mechanical, physiological, morphological and refractive changes to adjust the total refractive power of the eyes to maintain sharp visual acuity whenever an object of regard is moved toward and away from the distance at which humans typically view reading material. The aggregate changes experienced by the crystalline lenses of the…
There is an increasing interest in using nanoparticles as building blocks for well-defined structures that have practical applications owing to the various novel properties of nanoparticles. However, their assembly is a challenging task. Methods based on surface functionalization, andor template patterning have been used for this purpose, but both of these processes can be…
Carbon nanotubes are a nanostructured material that promises to have a wide range of applications. However, the present techniques used to build nanotube architectures have several deficiencies, such as the inability to precisely and controllably align the nanotubes. This invention is a novel and powerful method to assemble carbon nanotubes on planar substrates to build and…