technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 31 - 40 of 62
This technology relates to a process for creating electrodes in which high-surface area nanostructures are fabricated in situ by electrochemically etching a sacrificial scaffold material. Removing a material after it has been built into the cell opens up pores within the electrode whose size and density can be controlled, resulting in higher efficiency and Pt utilization.…
This technology relates to high electron mobility transistors (HEMT). In conventional off-type HEMTs, a large amount of gate threshold voltage variation is often found. Transistors according to this technology include a p-type region, a barrier region, an insulation film, a gate electrode, and a channel region. The channel region is connected to an upper surface of the p-…
This technology provides an improved MOSFET structure for power switching applications. An n- GaN reduced surface field (RESURF) region is created using epitaxial growth and selective etching of an n- drift layer. This is followed by ion implantation to achieve n GaN contact regions for the source and drain. This avoids the difficulties in controlling doping levels, leakage…
Optical concentrators are used to focus sunlight onto a smaller area where a photovoltaic cell is located in order to reduce the total area (and cost) of PV cells. Concentrators often have problems assocated with higher temperatures and the need to be moved to track the movement of the sun. This technology utilizes double sided PVs and multiple optical elements as a…
To implement hybrid nanodevices consisting of nanowire crossbars on top of a CMOS backplane, the challenge is to interface between the relatively coarse features of the CMOS domain and the dense nanowires above. Such an interface can be realised through a microwire to nanowire demultiplexer. This technology provides a hybrid demultiplexer architecture that combines both…
Many envisioned carbon nanotube (CNT) applications, such as device interconnections in integrated circuits, require directed growth of aligned CNTs, and low-resistance high-strength CNT junctions with tunable chemistry, stability, and electronic properties. However, forming CNT-CNT junctions on the substrate plane in a scalabe fashion, to enable in-plane device circuitry and…
Oxide glasses with earth ions have a number of different applications including: lasers, optical switches, optical amplifiers and have anti-glare properties. These rare earth glasses, however, come with a number of problems including concentration quenching, low solubility, and inhomogenous distributions of the glass components. This invention tackles these issues by providing…
Conventional laterla trench-based components, such as trench lateral transistors, typically have a substantial undesirable capacitance related to the overlap of gate and drain electrodes in the same trench. Particularly, many trench-type lateral transistors are fabricated with the gate and the drain formed in the same trench, typically separated by an oxide layer. The overlap…
An edge illuminated photovoltaic device is a photovoltaic device in which light illuminates a p-n junction through the edge of the device (i.e. in the direction substantially non-parallel) to the direction defined by the devices electrical contacts to the outer surface. While these devices are advantageous, they are yet to achieve the high efficiency and low cost required for…
The use of fillers in both thermoplastic and thermoset polymers has been common. The practice of filling polymers is motivated both by cost reduction and by the need to obtain altered or enhanced properties. Nanostructured dielectric materials have demonstrated advantages over micro-filled polymer dielectrics. However, this is a need to improve these nanocomposites such that…