A High Voltage (100 V) Lateral Trench Power MOSFET with Low Specific-on-resistance

Conventional laterla trench-based components, such as trench lateral transistors, typically have a substantial undesirable capacitance related to the overlap of gate and drain electrodes in the same trench. Particularly, many trench-type lateral transistors are fabricated with the gate and the drain formed in the same trench, typically separated by an oxide layer. The overlap of the gate and drain regions results in a parasitic gate-to-drain capacitance, which can damage frequency response.

Loss Tolerant Transmission Control Protocol

Data communication over wireless channels has become increasingly common, but wireless channels may be lossy such that data is often lost during transmission. This invention is directed to devices and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. A loss toleranct TCP protocol is used in which a maximum segment size is adapted to a minimum granularity of a congestion window, and proactive forward error correction (FEC) packets are added to a window of the data block.

Enhanced Step Coverage of Thin Films on Patterned Substrates by Oblique Angle Physical Vapor Deposition

For many decades, dry processing techniques, such as physical vapor deposition (PVD), have played a dominant role in integrated circuit metallization processes. During microelectronic device fabrication, films are often deposited on non-planar surfaces. The surface topography that wafers exhibit at various steps in the fabrication process arise from patterned features related to, for example, trenches andor vias.

GaSe Crystals for Broadband Terahertz Wave Detection

Terahertz (THz) waves occupy a segment of the electromagnetic spectrum between the infrared and microwave bands. As such, they can be used for imaging and sensing in ways not possible with conventional technologies such as X-ray and microwave. Because THz radiation transmits through almost anything that is not metal or liquid, the waves can see through most materials that might be used to conceal explosives or other materials, such as packaging, corrugated cardboard, clothing, shoes, backpacks, and book bags.

Field Induced THz Wave Emission Microscope

Terahertz (THz) radiation occupies a large portion of the electromagnetic spectrum between the infrared and microwave bands and is a developing frontier in imaging science and technology. In contrast to the relatively well-developed techniques for imaging at microwave and optical frequencies, however, there has been only limited basic research, new initiatives, and advanced technology developments in the THz band.

High repetition rate, linear, true time optical delay line

The photonic and optoelectronic communities have long been interested in the development of tunable delay systems for optical pulses. The various systems developed suffer from shortcomings such as limited delay range for high speed devices, low duty cycles and nonlinearity in optical path-length change, the inability to provide tens of centimeter scanning range and a repetition rate in the hundreds of hertz range, and low temporal resolution and optical loss.

New Technique for Introducing Varying Lateral Charge in Multiple Zone Junction Termination Extension of Semiconductor Devices

Silicon Carbide (SiC) has long been recognized as the choice for high voltage, high temperature, and high power applications. To achieve optimum design in SiC power devices, a varying charge in the lateral direction should be introduced. To f orm a junction termination extension (JTE) in SiC, different implant doses into multiple spaced zones can be used to create a non-uniform implant profile extending away from a junction termination. However, multiple implantation steps increase process cycle time, complexity, and fabrication cost.

Self-assembled sub-nanolayers as interfacial adhesion enhancers and diffusion barriers

Isolating individual components of nanoscale architectures comprised of thin films or nanostructures, without significantly impacting their functionalities, is a critical challenge in micro- and nano-scale device fabrication. One example that illustrates this challenge is seen in Cu interconnect structures for nanometer devices. These devices use interfacial barrier nanolayers to isolate copper layers from dielectric layers.

Semiconductor Surface-Field Emitter for T-Ray Generation

Terahertz (THz) waves occupy a segment of the electromagnetic spectrum between the infrared and microwave bands. As such, they can be used for imaging and sensing in ways not possible with conventional technologies such as X-ray and microwave. Because THz radiation transmits through almost anything that is not metal or liquid, the waves can see through most materials that might be used to conceal explosives or other materials, such as packaging, corrugated cardboard, clothing, shoes, backpacks, and book bags.

On-Hardware Optimization of Stepper-Motor System

This invention is directed to a method to improve the performance of stepper motor driven systems.Stepper motors are ubiquitous in modern office equipment and other machinery, yet little is published regarding their optimal use in open loop systems.Accurate control of a stepper motor is limited by the ability of the control system to approximate the actual motor and subsequently provide the correct instructions for achieving the actual desired movement with little or no error.Moving the motor to a specific position within a specified time period is difficult due to variations between motors