ULTRATHIN MAGNESIUM NANOBLADES

This technology is directed to nanostructures in general and to metal nanoblades in particular. Oblique angle deposition has been demonstrated as an effective technique to produce three-dimensional nanostructures, such as nanosprings and nanorods. Because of the physical shadowing effect, the oblique incident vapor is preferentially deposited onto the highest surface features. This novel nanostructure is an array of thin crystalline magnesium nanoblades, which are coated with nanocatalyst palladium to act as high surface area structures for hydrogen storage.

ATOMIC LAYER DEPOSITION OF COBALT FROM COBALT METALLORGANIC COMPOUNDS

Atomic layer deposition (ALD) is an ideal technique for fabricating thin layers requiring precision-controlled nanoscale film thickness. It is a type of chemical vapor deposition (CVD), wherein a film is built up through deposition of multiple ultra thin layers of atomic level controllability, with the thickness of the ultimate film being determined by the number of layers deposited.

GROWTH OF CUBIC CRYSTALLINE PHASE STRUCURE ON SILICON SUBSTRATES AND DEVICES COMPRISING THE CUBIC CRYSTALLINE PHASE STRUCTURE

This technology relates to semiconductor devices and growth techniques in the field of III-N semiconductors. For example, the technology provides a semiconductor device with a substrate comprising a groove. A buffer layer is formed on a surface of the groove. The buffer layer has at least one material chosen from AIN, GaN or AlxGa1-xN, where x is between zero and one. An epitaxially grown semiconductor material is disposed over the buffer layer, and at least a portion of the epitaxially grown semiconductor material having a cubic crystalline phase structure.

INTEGRATED POLARIZED LIGHT EMITTING DIODE WITH A BUILT-IN ROTATOR

This technology provides an LED design that can greatly improve polarization selectivity, 10:1, resulting in greater efficiency of the LED. The technology lies within a photonic crystal bi-refringent polarization rotator and an oxide spacer. The design blue-shifts transmission, which greatly improves overall efficiency of the LED by recycling wasted light and increasing polarization selectivity. Applications include: backlight units of liquid crystal displays, low noise sensing and high-contrast bio-imaging.

EFFICIENT AND DIRECTED NANO-LIGHT EMITTING DIODE, AND METHOD FOR MAKING SAME

This technology relates to an ultra high efficient LED system with the capability to modify an LEDs radiation pattern by changing its physical dimension-emission beam shape. The ultra high efficiency and redistribution of light has been achieved without the use of a back reflector. The ultra high efficiency can be controlled by changing the size of the nanorods within the design. These features can be very useful for bio-sensing and bio-imaging applications.

ULTRAFAST ALL-OPTICAL SWITCH USING CARBON NANOTUBE POLYMER COMPOSITES

The continued development of optical communications requires fast information processing. Therefore, ultrafast, all-optical systems and switches for basic processing at both ends of an optical transmission line are replacing electronic systems. However, there are speed and fabrication limits on present all-optical switches imposed by the properties of the materials presently used. This technology provides an improved ultrafast high sensitivity all-optical switch made from a single-walled carbon nanotube.

Methods and systems for the enhancement of terahertz wave generation for analyzing a remotely-located object

Using air as an emitting medium to generate terahertz wave has attracted attention because of its potential applications for remote distance THz wave sensing and imaging. Yet, the cutting edge energy conversion efficiency of THz wave generation with optical method is extremely low. Researchers at Rensselaer have developed a method for generating amplified terahertz radiation that includes inducing a first volume of a gas to produce a seed plasma and emit pulsed seed terahertz radiation by focusing an optical seed beam in the first volume.

Method and systems for Generating Amplified Terhertz Radiation for Analyzing Remotely-Located Objects

Using air as an emitting medium to generate terahertz wave has attracted attention because of its potential applications for remote distance THz wave sensing and imaging. Yet, the cutting edge energy conversion efficiency of THz wave generation with optical method is extremely low. Researchers at Rensselaer have developed a method for generating amplified terahertz radiation that includes inducing a first volume of a gas to produce a seed plasma and emit pulsed seed terahertz radiation by focusing an optical seed beam in the first volume.

Method and System for Plasma-Induced-Terahertz Spectoscopy

Since terahertz (THz) wave spectroscopy has been utilized to detect a number of chemical and explosive materials and related compounds by providing their spectral signatures in the THz frequency range, there is an interest in THz wve spectroscopy as a technique to sense improvised explosive devices. However, due to the severe water vapor attenuation of THz waves in the atmosphere, the reliable sensing range of THz wave spectroscopy has been limited to relatively short distances.