Low dielectric constant films derived by sol-gel processing of a hyperbranched polycarbosilane

Currently, the most common semiconductor dielectric is silicon dioxide (SiO2), which has a dielectric constant of about 4.0. There is a substantial interest in materials with low dielectric constants that can replace SiO2-based insulators as inter layer dielectrics (ILD). This invention is directed to a new process for the preparation of low dielectric constant films. The sol-gel process employs a hyperbranched polycarbosilane precursor that is applied to a substrate by spin coating.


This technology relates to neutron-detecting structures and methods of fabrication. Efficient solid-state neutron-detectors with large detecting surfaces and low gamma sensitivity are desired for detecting and preventing proliferation of special nuclear materials (SNMs). Unfortunately, available neutron-detectors are limited, for instance, by size, weight, high bias voltage requirements, andor cost due, for instance, to limited supply of enriched helium (3He) gas, which is currently employed in most neutron-detectors.