MULTIPLEX DETECTION OF BACTERIAL PATHOGENS VIA CELL WALL BINDING DOMAIN COMPLEXES

The rapid detection of pathogens and other microbial contaminants in food and biological samples is critical for ensuring the safety of consumers. Traditional methods to detect foodborne bacteria often rely on time-consuming growth in culture media, followed by isolation, biochemical identification, and sometimes serology. The enzyme-linked immunosorbent assay (ELISA) is the most prevalent antibody assay format used for pathogen detection in foods.

INTERNALIZATION OF PROTEINS INTO HOLLOWED GOLD NANOSTRUCTURES

Hollow gold nanoparticles, also known as gold nanocages, are effective vehicles for the transport and administration of therapeutic agents, bioactive compounds, biomolecular reagents, biocatalysts, and other molecular compounds of interest. However, better control of the bioavailability of gold nanocages content is needed. The patent describes a gold nanocage with pores, charged ligand molecules covalently bound to internal surfaces of the gold nanocage, and payload molecules electrostatically adsorbed onto the charged ligand molecules.

ENHANCED STABILITY OF PROTEINS IMMOBILIZED ON NANOPARTICLES

Many proteins lose enzymatic activity in harsh environments, such as non-optimal pH or temperature, or exposure to organic solvents. This invention is based on the discovery that by attaching certain proteins to single-walled carbon nanotubes ("SWNT"), protein function under such harsh conditions can be dramatically improved. Two enzymes which were stabilized in this manner, subtilisin carlsberg and soybean peroxidase, were found to be orders of magnitude more active than the native state enzyme when exposed to severe environments. Additionally, the enzymes attached to the SWNTs w

Aminoglycoside-Polyamine Displacers for Displacement Chromatography

Displacement chromatography has attracted signifcant attention as a powerful technique for the purification of bioherapeutic proteins and oligunucleotides. Displacement chromatography enables simultaneous concentration and purification in a single step, which is significant in the purifcation of biopharmaceuticals. However, the major obstacle in implementing this technique is the lack of a sufficient diversity of appropriate displace candidates that are applicable across a wide spectrum of bioseparation demands.

Enzyme immobilization for electroosmotic flow

While there have been rapid advances in microscale device fabrication, microfluidics, and lab-on-a-chip technology, there is still a need to immobilize biomolecules (especially proteins) on a microfluidics apparatus, while maintaining high biological activity and electroosmotic flow (EOF) capability. This invention relates to the discovery that certain polymers containing both ionic and hydrophobic groups can be reproducibly adhered to microfluidic channels and can be used to simulataneously immobilize biocatalysts with good catalytic activity while supporting EOF.

Biocatalytic Solgel Microarrays

Chemicals affect living organisms in both positive and negative ways, depending on the chemical. Chemicals can have different effects on different organisms, for example, potential drugs that work in animals studies but fail in human trials. A major reason to these differences is that species, individuals, and organs all have different kinds and amounts of enzymes. There is a need for a technology to rapidly, effectively, and economically test the heatlh effects of chemicals.

IN VITRO METABOLIC ENGINEERING ON MICROSCALE DEVICES

After discovering that a natural product has a particular, useful biological activity, it is desirable to prepare analogs of the natural product. However, natural products and their analogs are typically complex molecules requiring multi-step syntheses that are usually laborious, costly, and time consuming. This invention is directed to a microfluidics device that can be used to prepare natural products and their analogs.

SOLID-PHASE ARRAY-BASED BIOCATALYTIC TRANSFORMATIONS

This invention is directed to a step-wise enzymatic synthesis of combinatorial libraries of polymeric compounds prepared on a solid support in a configuration suitable for high-throughput screening for use in drug discovery and related fields. This invention provides compositions and methods for generating and screening libraries of phenolicanilinic polymers (and their related quinine forms) attached to a suitable surface and synthesized using enzymatic catalysis.