Pinned-contact oscillating liquid lens and imaging system

Existing liquid lense optical focusing strategies use liquid lenses after transient oscillations have dampened. The challenge with this existing liquid lens approach is two-fold. The first issue is to overcome the liquid inertia to enable a rapid state change, and the second, is to minimize the time it takes for transients induced during stoppage to Subside. Many systems use brute force activation methods to effect a shape change, creating undesired transient motion, which then necessitates a high-dissipative media to dampen them out.

PINNED-CONTACT, OSCILLATING LIQUID-LIQUID LENS AND IMAGING SYSTEMS

This technology relates to liquid lenses, which are adaptive optical elements that avoid some of the drawbacks of mechanical optical elements, such as delayed movements and excess weight. This technology provides an oscillating liquid lens that includes a liquid drop with first and second droplet portions, a second liquid, and a drive that oscillates the liquid drop within a channel of a substrate.