technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 131 - 140 of 194
Silicon Carbide (SiC) has long been recognized as the choice for high voltage, high temperature, and high power applications. To achieve optimum design in SiC power devices, a varying charge in the lateral direction should be introduced. To f orm a junction termination extension (JTE) in SiC, different implant doses into multiple spaced zones can be used to create a non-…
This invention is directed to a method and apparatus for growing a multi-component single crystal boules that provides high quality and growth rate by growing the crystal from a multi-component melt, such as a ternary, quaternary or higher order melt. In the past, only binary compounds such as GaAs) could be commercially produced by directional solidification from melts, while…
This invention is directed to a high-throughput process for screening proteins for kinetic stability.Kinetically stable proteins are trapped in one conformation and have a high barrier to unfolding, so they are resistant to aggregation and degradation and have a longer half-life.The ability to quickly and easily identify kinetically stable proteins would have a myriad of…
There are two basic classes of adhesives in widespread current use. The first class is pressure sensitive adhesives, such as are employed in adhesive tapes. The second class is reactive adhesives, used primarily for structural purposes. A long-standing problem with these types of adhesives is that they are unable of obtaining both a long working life and a rapid cure time.…
Multi-walled carbon nanotubes have been produced by several different methods, including chemical vapor deposition and laser ablation. These nanotubes are either grown as a layer of aligned nanotubes or as intertwined, randomly oriented bundles of nanotubes. Carbon nanotubes have many potential applications due to their mechanical, electrical, and eletronic properties. However…
Block copolymers are polymers whose molecular chains consist of incompatible segments that can self-assemble to form separated phases or microdomains. The versatile properties of block copolymers are determined by their phase-separated microdomains, generating a variety of applications in biomedical materials, engineering thermoplastics and elastomers, and optical and…
Isolating individual components of nanoscale architectures comprised of thin films or nanostructures, without significantly impacting their functionalities, is a critical challenge in micro- and nano-scale device fabrication. One example that illustrates this challenge is seen in Cu interconnect structures for nanometer devices. These devices use interfacial barrier nanolayers…
The crystalline lenses of the eyes undergo mechanical, physiological, morphological and refractive changes to adjust the total refractive power of the eyes to maintain sharp visual acuity whenever an object of regard is moved toward and away from the distance at which humans typically view reading material. The aggregate changes experienced by the crystalline lenses of the…
Terahertz (THz) waves occupy a segment of the electromagnetic spectrum between the infrared and microwave bands. As such, they can be used for imaging and sensing in ways not possible with conventional technologies such as X-ray and microwave. Because THz radiation transmits through almost anything that is not metal or liquid, the waves can see through most materials that…
This invention is directed to a self-commissioning photosensor and controller device that turns electric lights on and off using a microprocessor connected to a luminaire. The processor receives signals from a self-commissioned mountable photosensor. The photosensor uses a unique algorithm to control illumination at the task pane making the photosensor more accurate than…