technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 22
Alkaline exchange membranes (AEMs), also called anion exchange membranes, allow transportation of anions (ex: OH-, Cl-, Br-, etc.) from the cathode to the anode in electrochemical reaction. AEMs are the most critical component of AEM fuel cells, water electrolysis, and certain batteries, sensors, and actuators. Many AEM materials tend to degrade easily under high alkaline.…
Existing batteries suffer from performance deficiencies, for example, they have limited power density and may drain rapidly when used for certain applications. By employing sulfur in their cathodes, LiS batteries can realize substantially greater energy densities than existing energy storage devices. Sulfur by itself is not a suitable electrode material due to its poor…
This technology relates to anion exchange membranes with enhanced stability to high pH environments including poly(arylene sulfone) or poly(arylene ketone) with anion exchange groups. Membranes according to this technology are simple to produce and have good mechanical properties, improved alkaline stability, as well as good anionic conductivity. This technology is…
This technology relates to sound absorption material. Reduction of noise in the environment is important for avoiding hearing loss and for improving psychological health in humans. This technology provides sound absorbing composition that includes particles embedded in a network of nanofibers. The composition contains pores ranging in size from less than 10 nm to more than…
Rensselaer researchers have developed a scanning electron microscopy based temperature mapping technique which employs a temperature sensitive electron signal for nano-scale resolution, non-contact measurement. It provides enhanced capabilities for investigating heat generation and transfer at the nanoscale to address long-standing issues related to power consumption, heat…
Coastal urban development has resulted in buildings and civil structures extending to the waters edge, which has significantly reduced the coastlines natural mechanisms for resisting erosion from wave action. There is a need to restore the ability of many coastlines to absorb wave energy and to restore native shoreline plants. To address this problem, this technology…
Rensselaer researchers have developed a water treatment system that is integrated with the faade of a building. The system includes a lens that forms part of the building faade and that guides sunlight through wastewater carrying conduits so that the wastewater is treated by the sunlight. The system therefore provides an inexpesive water treatment solution, but also…
This technology relates to a photopolymerizable class of vinyl ether oligomers which can find application in the areas of coatings, adhesives, printing inks, photoresists and high impact composites. The versatile photopolymerization capability makes these oligomers an excellent strategic candidate for shrinkage control coatings in place of acrylates. These oligomers include…
This technology relates to the decorrelation of audio signals for use in surround sound techniques. Decorrelation improves listener envelopment and spatial immersion, but prior techniques suffer from unwanted timbre coloration and are computationally expensive. The present technology improves decorrelation by utilizing a pseudorandom sequence and a reciprocal of the…
The unique properties of carbon nanotubes (CNT), more specifically, single walled carbone nanotubes (SWNT), have made them excellent candidates for applications in bio-sensing, fuel cells, and nanofabrication. Considerable research effort has been devoted to development of methods to achieve stable suspensions of highly dispersed CNTs. However, progress has been impeded by two…