technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 13
Nonphotochemical quenching (NPQ) is a response mechanism in plants and algae that allows them to process and dissipate excess excitation energy as heat safely. Collecting fluorescence data from these plants and algae in surface water environments can incur errors from NPQ, ultimately leading to inaccurate calculations of chlorophyll concentration for environmental and…
Intramembrane proteolytic cleavage is an important process in a number of signaling pathways and pathologies. One of the best-known is that of Alzheimer’s Disease (AD), where the gamma-secretase enzyme cleaves amyloid precursor protein (APP) to create free amyloid. This free amyloid accumulates to form amyloid plaques during the later stages of the disease. New drugs are…
This technology relates to semiconductor devices and growth techniques in the field of III-N semiconductors. For example, the technology provides a semiconductor device with a substrate comprising a groove. A buffer layer is formed on a surface of the groove. The buffer layer has at least one material chosen from AIN, GaN or AlxGa1-xN, where x is between zero and one. An…
This technology provides an LED design that can greatly improve polarization selectivity, 10:1, resulting in greater efficiency of the LED. The technology lies within a photonic crystal bi-refringent polarization rotator and an oxide spacer. The design blue-shifts transmission, which greatly improves overall efficiency of the LED by recycling wasted light and increasing…
This technology relates to an ultra high efficient LED system with the capability to modify an LEDs radiation pattern by changing its physical dimension-emission beam shape. The ultra high efficiency and redistribution of light has been achieved without the use of a back reflector. The ultra high efficiency can be controlled by changing the size of the nanorods within the…
Using air as an emitting medium to generate terahertz wave has attracted attention because of its potential applications for remote distance THz wave sensing and imaging. Yet, the cutting edge energy conversion efficiency of THz wave generation with optical method is extremely low. Researchers at Rensselaer have developed a method for generating amplified terahertz radiation…
Using air as an emitting medium to generate terahertz wave has attracted attention because of its potential applications for remote distance THz wave sensing and imaging. Yet, the cutting edge energy conversion efficiency of THz wave generation with optical method is extremely low. Researchers at Rensselaer have developed a method for generating amplified terahertz radiation…
This technology is directed to nanostructures in general and to metal nanoblades in particular. Oblique angle deposition has been demonstrated as an effective technique to produce three-dimensional nanostructures, such as nanosprings and nanorods. Because of the physical shadowing effect, the oblique incident vapor is preferentially deposited onto the highest surface features…
Since terahertz (THz) wave spectroscopy has been utilized to detect a number of chemical and explosive materials and related compounds by providing their spectral signatures in the THz frequency range, there is an interest in THz wve spectroscopy as a technique to sense improvised explosive devices. However, due to the severe water vapor attenuation of THz waves in the…
The crystalline lenses of the eyes undergo mechanical, physiological, morphological and refractive changes to adjust the total refractive power of the eyes to maintain sharp visual acuity whenever an object of regard is moved toward and away from the distance at which humans typically view reading material. The aggregate changes experienced by the crystalline lenses of the…