technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 11 - 20 of 31
Rensselaer researchers have developed a thermodynamically stable dispersion technology resulting in thick, transparent, high refractive index silicone nanocomposites that increase the light efficiency of LEDs and improve the emitted light color quality. The nanocomposites could also be processed as transparent bulk material with high filler loading, which is essential for…
This technology relates to nanofilled polymeric materials with a tunable refractive index without increased scattering or loss. The tunability allows the creation of hybrid nanocomposites that combine the advantages of organic polymers (low weight, flexibility, good impact resistance, and excellent processability) and inorganic materials (high refractive index, good chemical…
This technology relates to a process for creating electrodes in which high-surface area nanostructures are fabricated in situ by electrochemically etching a sacrificial scaffold material. Removing a material after it has been built into the cell opens up pores within the electrode whose size and density can be controlled, resulting in higher efficiency and Pt utilization.…
Coating particulate material can often enhance the physical and chemical properties of the material including improved insulation properties, improved abrasion resistance, and improved strength. However, coated particulate materials are often porous and tend to absorb gases and liquids, which destroy the material, or at the very least, interfere with its insulating properties…
Many envisioned carbon nanotube (CNT) applications, such as device interconnections in integrated circuits, require directed growth of aligned CNTs, and low-resistance high-strength CNT junctions with tunable chemistry, stability, and electronic properties. However, forming CNT-CNT junctions on the substrate plane in a scalabe fashion, to enable in-plane device circuitry and…
Oxide glasses with earth ions have a number of different applications including: lasers, optical switches, optical amplifiers and have anti-glare properties. These rare earth glasses, however, come with a number of problems including concentration quenching, low solubility, and inhomogenous distributions of the glass components. This invention tackles these issues by providing…
In many industries, the blending of particulate material, for example, powders is often critical to the performance or desired characteristics of the resulting product, for example, the blending of powders to make concrete, the blending of pharmaceuticals, the blending of food ingredients, or the blending of ceramics, among other products. However, the blending equipment…
Displacement chromatography has attracted signifcant attention as a powerful technique for the purification of bioherapeutic proteins and oligunucleotides. Displacement chromatography enables simultaneous concentration and purification in a single step, which is significant in the purifcation of biopharmaceuticals. However, the major obstacle in implementing this technique is…
Isolating individual components of nanoscale architectures comprised of thin films or nanostructures, without significantly impacting their functionalities, is a critical challenge in micro- and nano-scale device fabrication. One example that illustrates this challenge is seen in Cu interconnect structures for nanometer devices. These devices use interfacial barrier nanolayers…
The crystalline lenses of the eyes undergo mechanical, physiological, morphological and refractive changes to adjust the total refractive power of the eyes to maintain sharp visual acuity whenever an object of regard is moved toward and away from the distance at which humans typically view reading material. The aggregate changes experienced by the crystalline lenses of the…