technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 11 - 20 of 37
This technology relates to adaptive optical devices, and particularly to liquid lenses. Such optical devices avoid the increased weight and fabrication complexity associated with moving solid lenses. This technology utilizes a lens magnification control for adjusting magnification of the liquid lens by increasing a volume of protruding liquid residing in a chamber.
This technology relates to anion exchange membranes with enhanced stability to high pH environments including poly(arylene sulfone) or poly(arylene ketone) with anion exchange groups. Membranes according to this technology are simple to produce and have good mechanical properties, improved alkaline stability, as well as good anionic conductivity. This technology is…
This technology relates to active flow control using an active roughness actuator. The active roughness actuator includes a surface having an aperture; a compliant layer covering the aperture; a chamber containing a fluid and a piezoelectric surface mechanically coupled to the chamber. The chamber is in fluid communication with the compliant layer via the at least one…
Rensselaer researchers have developed a scanning electron microscopy based temperature mapping technique which employs a temperature sensitive electron signal for nano-scale resolution, non-contact measurement. It provides enhanced capabilities for investigating heat generation and transfer at the nanoscale to address long-standing issues related to power consumption, heat…
This technology relates to a photopolymerizable class of vinyl ether oligomers which can find application in the areas of coatings, adhesives, printing inks, photoresists and high impact composites. The versatile photopolymerization capability makes these oligomers an excellent strategic candidate for shrinkage control coatings in place of acrylates. These oligomers include…
This technology relates to a high thermal conductivity thermal interface material that allows for the formation of an interconnected, spanning, high thermal conductivity network within the matrix of a polymeric material using nano particles. This material can yield two orders of magnitude higher thermal conductivities than the non-network counterpart, as well as factorial…
This technology relates to liquid lenses, which are adaptive optical elements that avoid some of the drawbacks of mechanical optical elements, such as delayed movements and excess weight. This technology provides an oscillating liquid lens that includes a liquid drop with first and second droplet portions, a second liquid, and a drive that oscillates the liquid drop within a…
Existing liquid lense optical focusing strategies use liquid lenses after transient oscillations have dampened. The challenge with this existing liquid lens approach is two-fold. The first issue is to overcome the liquid inertia to enable a rapid state change, and the second, is to minimize the time it takes for transients induced during stoppage to Subside. Many systems use…
Many times following orthopedic surgery or injury to lower extremeties patients are advised to gradually bear weight on their limb. Since patients do not want to cause further damage or pain to the injury they put little to no weight on the area. The application is necessary, however, for proper recovery. This invention is a mechanical device that indicates to the patient when…
The unique properties of carbon nanotubes (CNT), more specifically, single walled carbone nanotubes (SWNT), have made them excellent candidates for applications in bio-sensing, fuel cells, and nanofabrication. Considerable research effort has been devoted to development of methods to achieve stable suspensions of highly dispersed CNTs. However, progress has been impeded by two…