technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 11 - 20 of 44
This technology relates to synthesizing nanoparticles with multiple polymer assemblies attached. In one example, a first anchoring compound is attached to a nanoparticle, and a first group of monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another example, a…
Coastal urban development has resulted in buildings and civil structures extending to the waters edge, which has significantly reduced the coastlines natural mechanisms for resisting erosion from wave action. There is a need to restore the ability of many coastlines to absorb wave energy and to restore native shoreline plants. To address this problem, this technology…
Rensselaer researchers have developed a water treatment system that is integrated with the faade of a building. The system includes a lens that forms part of the building faade and that guides sunlight through wastewater carrying conduits so that the wastewater is treated by the sunlight. The system therefore provides an inexpesive water treatment solution, but also…
This technology relates to a photopolymerizable class of vinyl ether oligomers which can find application in the areas of coatings, adhesives, printing inks, photoresists and high impact composites. The versatile photopolymerization capability makes these oligomers an excellent strategic candidate for shrinkage control coatings in place of acrylates. These oligomers include…
This technology relates to the decorrelation of audio signals for use in surround sound techniques. Decorrelation improves listener envelopment and spatial immersion, but prior techniques suffer from unwanted timbre coloration and are computationally expensive. The present technology improves decorrelation by utilizing a pseudorandom sequence and a reciprocal of the…
This technology relates to nanofilled polymeric materials with a tunable refractive index without increased scattering or loss. The tunability allows the creation of hybrid nanocomposites that combine the advantages of organic polymers (low weight, flexibility, good impact resistance, and excellent processability) and inorganic materials (high refractive index, good chemical…
This technology relates to a process for creating electrodes in which high-surface area nanostructures are fabricated in situ by electrochemically etching a sacrificial scaffold material. Removing a material after it has been built into the cell opens up pores within the electrode whose size and density can be controlled, resulting in higher efficiency and Pt utilization.…
This technology couples the physical layer characteristics of wireless networks with key generation algorithms. It is based on the wireless communication phenomenon known as the principle of reciprocity which states that in the absence of interference both transmitter and receiver experience the same signal envelope. Signal envelope information can provide to the two…
Many envisioned carbon nanotube (CNT) applications, such as device interconnections in integrated circuits, require directed growth of aligned CNTs, and low-resistance high-strength CNT junctions with tunable chemistry, stability, and electronic properties. However, forming CNT-CNT junctions on the substrate plane in a scalabe fashion, to enable in-plane device circuitry and…
Oxide glasses with earth ions have a number of different applications including: lasers, optical switches, optical amplifiers and have anti-glare properties. These rare earth glasses, however, come with a number of problems including concentration quenching, low solubility, and inhomogenous distributions of the glass components. This invention tackles these issues by providing…