technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 71 - 80 of 91
Gaze determines a subjects current line of sight or fixation point. The direction of the eye gaze can express the interests of the subject and is a potential porthole into the current cognitive processes. Existing techniques for eye gaze tracking can be divided into video-based techniques and non-video-based techniques. However, non-video-based techniques are intrusive and…
There is an increasing interest in using nanoparticles as building blocks for well-defined structures that have practical applications owing to the various novel properties of nanoparticles. However, their assembly is a challenging task. Methods based on surface functionalization, andor template patterning have been used for this purpose, but both of these processes can be…
This invention is directed to a highly accurate and efficient method and algorithm, namely the Dual-Bootstrap Iterative Closest Point algorithm, for performing image registration generally and retinal image registration in particular. Retinal image registration is challenging. The images are projections of a curved surface taken from a wide range of viewpoints using an un-…
Carbon nanotubes are a nanostructured material that promises to have a wide range of applications. However, the present techniques used to build nanotube architectures have several deficiencies, such as the inability to precisely and controllably align the nanotubes. This invention is a novel and powerful method to assemble carbon nanotubes on planar substrates to build and…
This invention is directed to a novel non-destructive method to remove excess layers of copper from microchip interconnect-metallization processing, allowing copper to be used in place of aluminum. The new method, an Electro-Chemical Planarization process, is a means of removing the copper in an electrolysis-designed solution bath without damaging the thin-film and…
Lookback is defined as the ability of a logical process to change its past locally (i.e. without involving other logical processes). Logical processes with lookback are able to process out-of-timestamp order events, enabling new synchronization protocols for the parallel discrete event simulation. This technology is directed to two of such protocols, LookBack-Global Virtual…
Semiconductor nanoparticles (also called quantum dots or nanocrystals) are generally used a lasing medium in a laser, as fluorescent tags in biological testing methods, and as electronics devices. However, these nanoparticles traditionally have high production costs and the methods used for synthesis are extremely toxic at high temperatures, posing safety risks during mass…
For most types of gelatin-based imaging elements, surface abrasion and scratching results in reduction of image quality. Thus, processing the image and, later, casual handling of the image can easily mark or disfigure the image. There is, therefore, a need for an imaging element having improved scratch resistance over materials currently used. It has been unexpectedly…
Terahertz (THz) waves occupy a segment of the electromagnetic spectrum between the infrared and microwave bands. As such, they can be used for imaging and sensing in ways that are not possible with conventional technologies such as X-ray and microwave. Because THz radiation transmits through almost anything that is not metal or liquid, the waves can see through most materials…
Subjecting single-walled carbon nanotubes to a flash of light causes the material to ignite, producing a photo-acoustic effect. A simple camera flash demonstrates how heat confinement in nanostructures can lead to drastic structural effects and induce ignition under exposure to conditions where no reaction would be expected for macro scale materials. This technology could have…