technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 13
Behavioral biometrics tools identify users with keystroke dynamics, signature verification, voice recognition, and gesture recognition. These technologies compare a profile of the users against a database created with contextual information, including physiological, cognitive, and contextual traits. Institutions of higher education, governments, and financial institutions use…
Nonphotochemical quenching (NPQ) is a response mechanism in plants and algae that allows them to process and dissipate excess excitation energy as heat safely. Collecting fluorescence data from these plants and algae in surface water environments can incur errors from NPQ, ultimately leading to inaccurate calculations of chlorophyll concentration for environmental and…
Researchers at RPI are developing a cognitive logic-enabled AI that can operate on multiple screens and in multiple environments for the K-12 sector. Declining public school math and science test scores have concerned American politicians and educators since the 1980s. This educational failure coincides with the large number of employees unable to fill the growing number of…
The SARS-CoV-2 virus continues to cause major issues around the globe. Thus, effective therapeutics are critically needed to help better control the virus. Researchers at RPI and collaborating institutions have identified HCV protease inhibitor drugs that may be viable SARS-CoV-2 antivirals. These researchers have used the 3D structure of the SARS-CoV-2 protease to evaluate…
Intramembrane proteolytic cleavage is an important process in a number of signaling pathways and pathologies. One of the best-known is that of Alzheimer’s Disease (AD), where the gamma-secretase enzyme cleaves amyloid precursor protein (APP) to create free amyloid. This free amyloid accumulates to form amyloid plaques during the later stages of the disease. New drugs are…
Rensselaer researchers have developed a scanning electron microscopy based temperature mapping technique which employs a temperature sensitive electron signal for nano-scale resolution, non-contact measurement. It provides enhanced capabilities for investigating heat generation and transfer at the nanoscale to address long-standing issues related to power consumption, heat…
This technology relates to visually-guided multiprobe microassembly for assembling micro-electromechanical (MEMS) devices from multiple parts that are assembled rather than using bulk-processes to produce devices monolithically. Current production technologies primarily use a single wafer that is process chemically to produce finished devices. While this is useful for many…
Many proteins lose enzymatic activity in harsh environments, such as non-optimal pH or temperature, or exposure to organic solvents. This invention is based on the discovery that by attaching certain proteins to single-walled carbon nanotubes ("SWNT"), protein function under such harsh conditions can be dramatically improved. Two enzymes which were stabilized in this…
The crystalline lenses of the eyes undergo mechanical, physiological, morphological and refractive changes to adjust the total refractive power of the eyes to maintain sharp visual acuity whenever an object of regard is moved toward and away from the distance at which humans typically view reading material. The aggregate changes experienced by the crystalline lenses of the…
While there have been rapid advances in microscale device fabrication, microfluidics, and lab-on-a-chip technology, there is still a need to immobilize biomolecules (especially proteins) on a microfluidics apparatus, while maintaining high biological activity and electroosmotic flow (EOF) capability. This invention relates to the discovery that certain polymers containing both…