technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 30
Unlike vitamin D supplements, phototherapy provides a more natural means of vitamin D production. While research has shown that the vitamin D received from supplements is functionally equivalent to that synthesized from natural sunlight, evidence suggests that vitamin D sourced from sunlight remains active in our bodies longer than vitamin D derived from dietary supplements.…
The SARS-CoV-2 virus continues to cause major issues around the globe. Thus, effective therapeutics are critically needed to help better control the virus. Researchers at RPI and collaborating institutions have identified HCV protease inhibitor drugs that may be viable SARS-CoV-2 antivirals. These researchers have used the 3D structure of the SARS-CoV-2 protease to evaluate…
This technology relates to adaptive optical devices, and particularly to liquid lenses. Such optical devices avoid the increased weight and fabrication complexity associated with moving solid lenses. This technology utilizes a lens magnification control for adjusting magnification of the liquid lens by increasing a volume of protruding liquid residing in a chamber.
This technology relates to active flow control using an active roughness actuator. The active roughness actuator includes a surface having an aperture; a compliant layer covering the aperture; a chamber containing a fluid and a piezoelectric surface mechanically coupled to the chamber. The chamber is in fluid communication with the compliant layer via the at least one…
Rensselaer researchers have developed a thermodynamically stable dispersion technology resulting in thick, transparent, high refractive index silicone nanocomposites that increase the light efficiency of LEDs and improve the emitted light color quality. The nanocomposites could also be processed as transparent bulk material with high filler loading, which is essential for…
This technology relates to synthesizing nanoparticles with multiple polymer assemblies attached. In one example, a first anchoring compound is attached to a nanoparticle, and a first group of monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another example, a…
This technology relates to visually-guided multiprobe microassembly for assembling micro-electromechanical (MEMS) devices from multiple parts that are assembled rather than using bulk-processes to produce devices monolithically. Current production technologies primarily use a single wafer that is process chemically to produce finished devices. While this is useful for many…
This technology relates to a high thermal conductivity thermal interface material that allows for the formation of an interconnected, spanning, high thermal conductivity network within the matrix of a polymeric material using nano particles. This material can yield two orders of magnitude higher thermal conductivities than the non-network counterpart, as well as factorial…
This technology relates to liquid lenses, which are adaptive optical elements that avoid some of the drawbacks of mechanical optical elements, such as delayed movements and excess weight. This technology provides an oscillating liquid lens that includes a liquid drop with first and second droplet portions, a second liquid, and a drive that oscillates the liquid drop within a…
This technology relates to nanofilled polymeric materials with a tunable refractive index without increased scattering or loss. The tunability allows the creation of hybrid nanocomposites that combine the advantages of organic polymers (low weight, flexibility, good impact resistance, and excellent processability) and inorganic materials (high refractive index, good chemical…