technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 61 - 70 of 78
While there have been rapid advances in microscale device fabrication, microfluidics, and lab-on-a-chip technology, there is still a need to immobilize biomolecules (especially proteins) on a microfluidics apparatus, while maintaining high biological activity and electroosmotic flow (EOF) capability. This invention relates to the discovery that certain polymers containing both…
This invention is directed to a new, inexpensive analytical instrument that can be used to study and evaluate such essential parameters as light intensity, photoinitiator concentration, and monomer reactivity in a wide variety of UV photopolymerization curing applications. The device provides real-time information as the sample proceeds through the photoreactive phase. Through…
Currently, the most common semiconductor dielectric is silicon dioxide (SiO2), which has a dielectric constant of about 4.0. There is a substantial interest in materials with low dielectric constants that can replace SiO2-based insulators as inter layer dielectrics (ILD). This invention is directed to a new process for the preparation of low dielectric constant films. The sol-…
Gaze determines a subjects current line of sight or fixation point. The direction of the eye gaze can express the interests of the subject and is a potential porthole into the current cognitive processes. Existing techniques for eye gaze tracking can be divided into video-based techniques and non-video-based techniques. However, non-video-based techniques are intrusive and…
Chemicals affect living organisms in both positive and negative ways, depending on the chemical. Chemicals can have different effects on different organisms, for example, potential drugs that work in animals studies but fail in human trials. A major reason to these differences is that species, individuals, and organs all have different kinds and amounts of enzymes. There is a…
As part of the continuing effort to reduce the environmental impact of various industrial chemical processes, there has been a strong emphasis in developing new methodology for the application and cure of organic coatings. While these ubiquitous materials are absolutely essential to modern life, they also constitute one of the primary industrial Sources of emissions of…
Semiconductor nanoparticles (also called quantum dots or nanocrystals) are generally used a lasing medium in a laser, as fluorescent tags in biological testing methods, and as electronics devices. However, these nanoparticles traditionally have high production costs and the methods used for synthesis are extremely toxic at high temperatures, posing safety risks during mass…
Several methods for the preparation of polymeric microbeads for chromatographic separations in the pharmaceutical industry have been developed over the past several decades. However, those methods often result in microbeads with a wide distribution of sizes. This invention results in more uniform particle size but also microbeads that are derived from multifunctional epoxy…
RECON is an algorithm for the rapid reconstruction of molecular charge densities and charge density-based electronic properties of molecules, using atomic charge density fragments precomputed from ab initio wave functions. The method is based on Bader's quantum theory of Atoms in Molecules. A library of atomic charge density fragments has been built in a form that allows for…
The current high-growth nature of digital communications demands higher speed serial communication circuits. Present day technologies barely manage to keep up with the present need to communicate at high speeds (e.g., gigabit, terabit, and higher transmission speeds). New techniques are needed to ensure that methods for serial communication can continue to expand and grow. A…