technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 21 - 30 of 33
Interest and research activity in the photoinitiated cationic crosslinking polymerizations of multifunctional epoxide and oxetanes monomers have increased rapidly as this technology has found broad use in many industrial applications. However, while the synthesis of current epoxy-functional siloxanes yields monomers that undergo efficient cationic ring-opening…
Most lighting level measurements are characterized in terms of illuminance.While this is useful for indoor applications, illuminance levels are not always as useful for outdoor lighting efficiency characterization.Lighting designers and researchers need a method to accurately characterize their outdoor or low level lighting applications. This invention is directed to a system…
While there have been rapid advances in microscale device fabrication, microfluidics, and lab-on-a-chip technology, there is still a need to immobilize biomolecules (especially proteins) on a microfluidics apparatus, while maintaining high biological activity and electroosmotic flow (EOF) capability. This invention relates to the discovery that certain polymers containing both…
This invention is directed to a new, inexpensive analytical instrument that can be used to study and evaluate such essential parameters as light intensity, photoinitiator concentration, and monomer reactivity in a wide variety of UV photopolymerization curing applications. The device provides real-time information as the sample proceeds through the photoreactive phase. Through…
Currently, the most common semiconductor dielectric is silicon dioxide (SiO2), which has a dielectric constant of about 4.0. There is a substantial interest in materials with low dielectric constants that can replace SiO2-based insulators as inter layer dielectrics (ILD). This invention is directed to a new process for the preparation of low dielectric constant films. The sol-…
This invention is directed to a highly accurate and efficient method and algorithm, namely the Dual-Bootstrap Iterative Closest Point algorithm, for performing image registration generally and retinal image registration in particular. Retinal image registration is challenging. The images are projections of a curved surface taken from a wide range of viewpoints using an un-…
Chemicals affect living organisms in both positive and negative ways, depending on the chemical. Chemicals can have different effects on different organisms, for example, potential drugs that work in animals studies but fail in human trials. A major reason to these differences is that species, individuals, and organs all have different kinds and amounts of enzymes. There is a…
As part of the continuing effort to reduce the environmental impact of various industrial chemical processes, there has been a strong emphasis in developing new methodology for the application and cure of organic coatings. While these ubiquitous materials are absolutely essential to modern life, they also constitute one of the primary industrial Sources of emissions of…
Several methods for the preparation of polymeric microbeads for chromatographic separations in the pharmaceutical industry have been developed over the past several decades. However, those methods often result in microbeads with a wide distribution of sizes. This invention results in more uniform particle size but also microbeads that are derived from multifunctional epoxy…
RECON is an algorithm for the rapid reconstruction of molecular charge densities and charge density-based electronic properties of molecules, using atomic charge density fragments precomputed from ab initio wave functions. The method is based on Bader's quantum theory of Atoms in Molecules. A library of atomic charge density fragments has been built in a form that allows for…