technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 31 - 40 of 69
Using air as an emitting medium to generate terahertz wave has attracted attention because of its potential applications for remote distance THz wave sensing and imaging. Yet, the cutting edge energy conversion efficiency of THz wave generation with optical method is extremely low. Researchers at Rensselaer have developed a method for generating amplified terahertz radiation…
This technology is directed to nanostructures in general and to metal nanoblades in particular. Oblique angle deposition has been demonstrated as an effective technique to produce three-dimensional nanostructures, such as nanosprings and nanorods. Because of the physical shadowing effect, the oblique incident vapor is preferentially deposited onto the highest surface features…
Coating particulate material can often enhance the physical and chemical properties of the material including improved insulation properties, improved abrasion resistance, and improved strength. However, coated particulate materials are often porous and tend to absorb gases and liquids, which destroy the material, or at the very least, interfere with its insulating properties…
Many envisioned carbon nanotube (CNT) applications, such as device interconnections in integrated circuits, require directed growth of aligned CNTs, and low-resistance high-strength CNT junctions with tunable chemistry, stability, and electronic properties. However, forming CNT-CNT junctions on the substrate plane in a scalabe fashion, to enable in-plane device circuitry and…
Oxide glasses with earth ions have a number of different applications including: lasers, optical switches, optical amplifiers and have anti-glare properties. These rare earth glasses, however, come with a number of problems including concentration quenching, low solubility, and inhomogenous distributions of the glass components. This invention tackles these issues by providing…
Existing liquid lense optical focusing strategies use liquid lenses after transient oscillations have dampened. The challenge with this existing liquid lens approach is two-fold. The first issue is to overcome the liquid inertia to enable a rapid state change, and the second, is to minimize the time it takes for transients induced during stoppage to Subside. Many systems use…
Many times following orthopedic surgery or injury to lower extremeties patients are advised to gradually bear weight on their limb. Since patients do not want to cause further damage or pain to the injury they put little to no weight on the area. The application is necessary, however, for proper recovery. This invention is a mechanical device that indicates to the patient when…
Since terahertz (THz) wave spectroscopy has been utilized to detect a number of chemical and explosive materials and related compounds by providing their spectral signatures in the THz frequency range, there is an interest in THz wve spectroscopy as a technique to sense improvised explosive devices. However, due to the severe water vapor attenuation of THz waves in the…
The unique properties of carbon nanotubes (CNT), more specifically, single walled carbone nanotubes (SWNT), have made them excellent candidates for applications in bio-sensing, fuel cells, and nanofabrication. Considerable research effort has been devoted to development of methods to achieve stable suspensions of highly dispersed CNTs. However, progress has been impeded by two…
Present microelectronic photoimaging applications employ onium salts for deep UV (I-line, 365 nm) photolithography. Since most onium salts do not absorb at this wavelength, photosensitizers are commonly employed. Polynuclear aromatic hydrocarbons are the most efficient known examples of electron-transfer photosensitizers for onium salts. However, they have serious drawbacks…