technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 55
New ideas to increase the safety and reliability of multicopters have become critical to optimizing maintenance activities, reducing fatalities in unmanned aircraft, increasing surveillance reliability in drones, and improving mission effectiveness in vertical take-off and landing (VTOL) aircraft. RPI innovators created a Multicopter Online Rotor Fault Diagnosis System that…
Researchers at RPI have developed a conceptual notebook/tablet/laptop device that integrates the ability to capture written text onto a flexible screen which can be rolled up after use into storage compartments. The device provides users a dedicated wide screen display for written text/image/drawing capture, is portable and easy to store with screen retraction capability via…
Space exploration within the commercial, business, and military sectors continues to increase, and the development of an autonomous navigation system capable of guidance navigation anywhere in the solar system free from the use of Earthbound orbiting satellites is required to ensure that these operations can be performed safely and accurately. Researchers at Rensselaer created…
Researchers at Rensselaer Polytechnic Institute (RPI) created a 3D computer simulation tool to assess the behavior/interaction of a hydrophobic membrane material with waste/feed water particles to assist membrane manufacturers/end-users in identifying a high performing membrane filtration/separation system. This simulation protocol could represent a viable, more cost-effective…
The SARS-CoV-2 virus continues to cause major issues around the globe. Thus, effective therapeutics are critically needed to help better control the virus. Researchers at RPI and collaborating institutions have identified HCV protease inhibitor drugs that may be viable SARS-CoV-2 antivirals. These researchers have used the 3D structure of the SARS-CoV-2 protease to evaluate…
Researchers at RPI have developed a prototype hydrocarbon-based membrane for use in AE fuel cells and electrolyzers. This membrane can operate in a stable manner at elevated temperatures with the potential to provide enhanced operational performance. This membrane could possibly effectively participate in the growing fuel cell/electrolyzer market, as tested, the DPE membrane…
Rensselaer inventors created a nanocomposite fiber that promotes quick coagulation during hemorrhage resulting in reduced mobility and improved survival. The nanofiber composite is comprised of halloysite nanoclay, a natural occurring aluminosilicate nanoclay that exhibits a hollow tubular scroll structure. Hemostatic products on the market are effective in the short-term but…
Lithium ion batteries (LIB) have proven a key enabling technology for consumer electronics and are setting the stage for a revolution in transportation. Electric vehicles (EV), whether on land, sea, or air, are increasingly gaining market share over vehicles powered by the traditional combustion engine. Environmental concerns and stringent laws continue to drive increasing…
Using raw materials (thermoplastic pellets and rolls of fiber tows), this invention will continuously impregnate fiber tows with molten thermoplastic resin for fabrication of custom composite shapes, unlike current methods, which do not use raw materials and are extremely expensive processes. The ‘In Situ’ process can be used to either directly “print” composite parts in an…
Rensselaer inventors created a multi-launch system and capture method to effectively clean up debris in a cost-effective manner. Operationally, the method consists of deploying a small-sized object called the CubeSat. This is a small satellite with a low mass and can be part of the launch of another larger satellite or other space-based object. The CubeSat is launched into…