technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 21 - 30 of 37
Using air as an emitting medium to generate terahertz wave has attracted attention because of its potential applications for remote distance THz wave sensing and imaging. Yet, the cutting edge energy conversion efficiency of THz wave generation with optical method is extremely low. Researchers at Rensselaer have developed a method for generating amplified terahertz radiation…
This technology is directed to nanostructures in general and to metal nanoblades in particular. Oblique angle deposition has been demonstrated as an effective technique to produce three-dimensional nanostructures, such as nanosprings and nanorods. Because of the physical shadowing effect, the oblique incident vapor is preferentially deposited onto the highest surface features…
Coating particulate material can often enhance the physical and chemical properties of the material including improved insulation properties, improved abrasion resistance, and improved strength. However, coated particulate materials are often porous and tend to absorb gases and liquids, which destroy the material, or at the very least, interfere with its insulating properties…
Since terahertz (THz) wave spectroscopy has been utilized to detect a number of chemical and explosive materials and related compounds by providing their spectral signatures in the THz frequency range, there is an interest in THz wve spectroscopy as a technique to sense improvised explosive devices. However, due to the severe water vapor attenuation of THz waves in the…
Many proteins lose enzymatic activity in harsh environments, such as non-optimal pH or temperature, or exposure to organic solvents. This invention is based on the discovery that by attaching certain proteins to single-walled carbon nanotubes ("SWNT"), protein function under such harsh conditions can be dramatically improved. Two enzymes which were stabilized in this…
In many industries, the blending of particulate material, for example, powders is often critical to the performance or desired characteristics of the resulting product, for example, the blending of powders to make concrete, the blending of pharmaceuticals, the blending of food ingredients, or the blending of ceramics, among other products. However, the blending equipment…
Displacement chromatography has attracted signifcant attention as a powerful technique for the purification of bioherapeutic proteins and oligunucleotides. Displacement chromatography enables simultaneous concentration and purification in a single step, which is significant in the purifcation of biopharmaceuticals. However, the major obstacle in implementing this technique is…
While there have been rapid advances in microscale device fabrication, microfluidics, and lab-on-a-chip technology, there is still a need to immobilize biomolecules (especially proteins) on a microfluidics apparatus, while maintaining high biological activity and electroosmotic flow (EOF) capability. This invention relates to the discovery that certain polymers containing both…
Conventional technologies used for the generation of solar power include building-integrated flat-plate photovoltaic (PV) systems, and stand-alone concentrating PV systems that are removed from the location of power application. Although these technologies work, widespread adoption of them for general use has been hampered by a number of impediments, such as the large amount…
Chemicals affect living organisms in both positive and negative ways, depending on the chemical. Chemicals can have different effects on different organisms, for example, potential drugs that work in animals studies but fail in human trials. A major reason to these differences is that species, individuals, and organs all have different kinds and amounts of enzymes. There is a…