technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 11 - 20 of 40
Detecting differences at the cellular level is an ongoing problem which, if successfully addressed, could help solve several prevalent ailments, including cancers and prenatal diseases. Normal tissue function requires appropriate cell positioning and directional motion. This property, known as chirality, can be altered by genetic and environmental factors, leading to, for…
The cross-section of an X-ray phase shift image is a thousand times greater than that of X-ray attenuation in soft tissue over the diagnostic energy range implying phase imaging can achieve a much higher signal-to-noise ratio and substantially lower radiation dose than attenuation-based X-ray imaging. Grating interferometry is a state of the art X-ray imaging approach, which…
Researcher Ge Wang and team created imaging systems and methods using excited nanoparticles coupled between CT and MRI to provide faster localization information for targeted, high resolution imaging. The study of biological systems is a complex pursuit that requires sufficient models and tools to measure responses to controlled changes in the system, however, there has been a…
Time of flight PET (TOF-PET) is an advance over traditional PET that uses the time difference in detection of the two photon events. TOF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. This technology uses a direct…
Computed Tomography (CT) is an important tool in diagnostic imaging. It plays a key role in diagnosis and intervention. Many advanced CT systems use wide detector arrays, multiple sources, andor very fast rotation speed, for important clinical applications (e.g., coronary artery and whole organ perfusion imaging). As a result, modern CT scanners are expensive and are typically…
Rensselaer researchers have developed a scanning electron microscopy based temperature mapping technique which employs a temperature sensitive electron signal for nano-scale resolution, non-contact measurement. It provides enhanced capabilities for investigating heat generation and transfer at the nanoscale to address long-standing issues related to power consumption, heat…
This technology relates to semiconductor devices and growth techniques in the field of III-N semiconductors. For example, the technology provides a semiconductor device with a substrate comprising a groove. A buffer layer is formed on a surface of the groove. The buffer layer has at least one material chosen from AIN, GaN or AlxGa1-xN, where x is between zero and one. An…
Rensselaer researchers have developed a thermodynamically stable dispersion technology resulting in thick, transparent, high refractive index silicone nanocomposites that increase the light efficiency of LEDs and improve the emitted light color quality. The nanocomposites could also be processed as transparent bulk material with high filler loading, which is essential for…
This technology relates to synthesizing nanoparticles with multiple polymer assemblies attached. In one example, a first anchoring compound is attached to a nanoparticle, and a first group of monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another example, a…
This technology relates to visually-guided multiprobe microassembly for assembling micro-electromechanical (MEMS) devices from multiple parts that are assembled rather than using bulk-processes to produce devices monolithically. Current production technologies primarily use a single wafer that is process chemically to produce finished devices. While this is useful for many…