technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 71 - 80 of 93
This invention is directed to a method and apparatus for growing a multi-component single crystal boules that provides high quality and growth rate by growing the crystal from a multi-component melt, such as a ternary, quaternary or higher order melt. In the past, only binary compounds such as GaAs) could be commercially produced by directional solidification from melts, while…
Isolating individual components of nanoscale architectures comprised of thin films or nanostructures, without significantly impacting their functionalities, is a critical challenge in micro- and nano-scale device fabrication. One example that illustrates this challenge is seen in Cu interconnect structures for nanometer devices. These devices use interfacial barrier nanolayers…
This invention is directed to a self-commissioning photosensor and controller device that turns electric lights on and off using a microprocessor connected to a luminaire. The processor receives signals from a self-commissioned mountable photosensor. The photosensor uses a unique algorithm to control illumination at the task pane making the photosensor more accurate than…
Most lighting level measurements are characterized in terms of illuminance.While this is useful for indoor applications, illuminance levels are not always as useful for outdoor lighting efficiency characterization.Lighting designers and researchers need a method to accurately characterize their outdoor or low level lighting applications. This invention is directed to a system…
Conventional technologies used for the generation of solar power include building-integrated flat-plate photovoltaic (PV) systems, and stand-alone concentrating PV systems that are removed from the location of power application. Although these technologies work, widespread adoption of them for general use has been hampered by a number of impediments, such as the large amount…
Gaze determines a subjects current line of sight or fixation point. The direction of the eye gaze can express the interests of the subject and is a potential porthole into the current cognitive processes. Existing techniques for eye gaze tracking can be divided into video-based techniques and non-video-based techniques. However, non-video-based techniques are intrusive and…
There is an increasing interest in using nanoparticles as building blocks for well-defined structures that have practical applications owing to the various novel properties of nanoparticles. However, their assembly is a challenging task. Methods based on surface functionalization, andor template patterning have been used for this purpose, but both of these processes can be…
Carbon nanotubes are a nanostructured material that promises to have a wide range of applications. However, the present techniques used to build nanotube architectures have several deficiencies, such as the inability to precisely and controllably align the nanotubes. This invention is a novel and powerful method to assemble carbon nanotubes on planar substrates to build and…
This invention is directed to a novel non-destructive method to remove excess layers of copper from microchip interconnect-metallization processing, allowing copper to be used in place of aluminum. The new method, an Electro-Chemical Planarization process, is a means of removing the copper in an electrolysis-designed solution bath without damaging the thin-film and…
Semiconductor nanoparticles (also called quantum dots or nanocrystals) are generally used a lasing medium in a laser, as fluorescent tags in biological testing methods, and as electronics devices. However, these nanoparticles traditionally have high production costs and the methods used for synthesis are extremely toxic at high temperatures, posing safety risks during mass…