technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 39
Researchers at Rensselaer have created a technology that combines different modules of an LED light fixture into a single component that can be 3D printed. Combining the modules into a single 3D printed component could decrease overall LED light fixture manufacturing/production costs, reduce required labor for product assembly, and reduce the number of parts necessary to…
Researchers at RPI are developing a cognitive logic-enabled AI that can operate on multiple screens and in multiple environments for the K-12 sector. Declining public school math and science test scores have concerned American politicians and educators since the 1980s. This educational failure coincides with the large number of employees unable to fill the growing number of…
Unlike vitamin D supplements, phototherapy provides a more natural means of vitamin D production. While research has shown that the vitamin D received from supplements is functionally equivalent to that synthesized from natural sunlight, evidence suggests that vitamin D sourced from sunlight remains active in our bodies longer than vitamin D derived from dietary supplements.…
Based on the famous ""mfold"", the UNAFold software package is an integrated collection of programs that simulate nucleic acid folding and hybridization, and its melting pathways for one or two single-stranded molecules. The package predicts folding for single-stranded RNA or DNA through combination of free energy minimization, partition function calculations and stochastic…
Researchers at Rensselaer created a robotic assistant that is more versatile, cheaper, and which can be remotely controllable by anyone whose mobility is impaired. The disclosed robotic assistant generally comprises a motorized base and dual arm robot mounted thereon. The robotic assistant is designed to be utilized by mobility impaired individuals through a sip-and-blow…
This technology relates to sound absorption material. Reduction of noise in the environment is important for avoiding hearing loss and for improving psychological health in humans. This technology provides sound absorbing composition that includes particles embedded in a network of nanofibers. The composition contains pores ranging in size from less than 10 nm to more than…
This technology relates to semiconductor devices and growth techniques in the field of III-N semiconductors. For example, the technology provides a semiconductor device with a substrate comprising a groove. A buffer layer is formed on a surface of the groove. The buffer layer has at least one material chosen from AIN, GaN or AlxGa1-xN, where x is between zero and one. An…
Rensselaer researchers have developed a thermodynamically stable dispersion technology resulting in thick, transparent, high refractive index silicone nanocomposites that increase the light efficiency of LEDs and improve the emitted light color quality. The nanocomposites could also be processed as transparent bulk material with high filler loading, which is essential for…
This technology relates to synthesizing nanoparticles with multiple polymer assemblies attached. In one example, a first anchoring compound is attached to a nanoparticle, and a first group of monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another example, a…
Coastal urban development has resulted in buildings and civil structures extending to the waters edge, which has significantly reduced the coastlines natural mechanisms for resisting erosion from wave action. There is a need to restore the ability of many coastlines to absorb wave energy and to restore native shoreline plants. To address this problem, this technology…