technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 61 - 70 of 82
The crystalline lenses of the eyes undergo mechanical, physiological, morphological and refractive changes to adjust the total refractive power of the eyes to maintain sharp visual acuity whenever an object of regard is moved toward and away from the distance at which humans typically view reading material. The aggregate changes experienced by the crystalline lenses of the…
This invention is directed to a method to improve the performance of stepper motor driven systems.Stepper motors are ubiquitous in modern office equipment and other machinery, yet little is published regarding their optimal use in open loop systems.Accurate control of a stepper motor is limited by the ability of the control system to approximate the actual motor and…
Gaze determines a subjects current line of sight or fixation point. The direction of the eye gaze can express the interests of the subject and is a potential porthole into the current cognitive processes. Existing techniques for eye gaze tracking can be divided into video-based techniques and non-video-based techniques. However, non-video-based techniques are intrusive and…
There is an increasing interest in using nanoparticles as building blocks for well-defined structures that have practical applications owing to the various novel properties of nanoparticles. However, their assembly is a challenging task. Methods based on surface functionalization, andor template patterning have been used for this purpose, but both of these processes can be…
This invention is directed to a highly accurate and efficient method and algorithm, namely the Dual-Bootstrap Iterative Closest Point algorithm, for performing image registration generally and retinal image registration in particular. Retinal image registration is challenging. The images are projections of a curved surface taken from a wide range of viewpoints using an un-…
Carbon nanotubes are a nanostructured material that promises to have a wide range of applications. However, the present techniques used to build nanotube architectures have several deficiencies, such as the inability to precisely and controllably align the nanotubes. This invention is a novel and powerful method to assemble carbon nanotubes on planar substrates to build and…
This invention is directed to a novel non-destructive method to remove excess layers of copper from microchip interconnect-metallization processing, allowing copper to be used in place of aluminum. The new method, an Electro-Chemical Planarization process, is a means of removing the copper in an electrolysis-designed solution bath without damaging the thin-film and…
Semiconductor nanoparticles (also called quantum dots or nanocrystals) are generally used a lasing medium in a laser, as fluorescent tags in biological testing methods, and as electronics devices. However, these nanoparticles traditionally have high production costs and the methods used for synthesis are extremely toxic at high temperatures, posing safety risks during mass…
For most types of gelatin-based imaging elements, surface abrasion and scratching results in reduction of image quality. Thus, processing the image and, later, casual handling of the image can easily mark or disfigure the image. There is, therefore, a need for an imaging element having improved scratch resistance over materials currently used. It has been unexpectedly…
Terahertz (THz) waves occupy a segment of the electromagnetic spectrum between the infrared and microwave bands. As such, they can be used for imaging and sensing in ways that are not possible with conventional technologies such as X-ray and microwave. Because THz radiation transmits through almost anything that is not metal or liquid, the waves can see through most materials…