technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 1 - 10 of 30
Nonphotochemical quenching (NPQ) is a response mechanism in plants and algae that allows them to process and dissipate excess excitation energy as heat safely. Collecting fluorescence data from these plants and algae in surface water environments can incur errors from NPQ, ultimately leading to inaccurate calculations of chlorophyll concentration for environmental and…
Unlike vitamin D supplements, phototherapy provides a more natural means of vitamin D production. While research has shown that the vitamin D received from supplements is functionally equivalent to that synthesized from natural sunlight, evidence suggests that vitamin D sourced from sunlight remains active in our bodies longer than vitamin D derived from dietary supplements.…
The SARS-CoV-2 virus continues to cause major issues around the globe. Thus, effective therapeutics are critically needed to help better control the virus. Researchers at RPI and collaborating institutions have identified HCV protease inhibitor drugs that may be viable SARS-CoV-2 antivirals. These researchers have used the 3D structure of the SARS-CoV-2 protease to evaluate…
Rensselaer inventors created a nanocomposite fiber that promotes quick coagulation during hemorrhage resulting in reduced mobility and improved survival. The nanofiber composite is comprised of halloysite nanoclay, a natural occurring aluminosilicate nanoclay that exhibits a hollow tubular scroll structure. Hemostatic products on the market are effective in the short-term but…
Alkaline exchange membranes (AEMs), also called anion exchange membranes, allow transportation of anions (ex: OH-, Cl-, Br-, etc.) from the cathode to the anode in electrochemical reaction. AEMs are the most critical component of AEM fuel cells, water electrolysis, and certain batteries, sensors, and actuators. Many AEM materials tend to degrade easily under high alkaline.…
Existing batteries suffer from performance deficiencies, for example, they have limited power density and may drain rapidly when used for certain applications. By employing sulfur in their cathodes, LiS batteries can realize substantially greater energy densities than existing energy storage devices. Sulfur by itself is not a suitable electrode material due to its poor…
This technology relates to anion exchange membranes with enhanced stability to high pH environments including poly(arylene sulfone) or poly(arylene ketone) with anion exchange groups. Membranes according to this technology are simple to produce and have good mechanical properties, improved alkaline stability, as well as good anionic conductivity. This technology is…
Rensselaer researchers have developed a scanning electron microscopy based temperature mapping technique which employs a temperature sensitive electron signal for nano-scale resolution, non-contact measurement. It provides enhanced capabilities for investigating heat generation and transfer at the nanoscale to address long-standing issues related to power consumption, heat…
This technology relates to a photopolymerizable class of vinyl ether oligomers which can find application in the areas of coatings, adhesives, printing inks, photoresists and high impact composites. The versatile photopolymerization capability makes these oligomers an excellent strategic candidate for shrinkage control coatings in place of acrylates. These oligomers include…
This technology relates to solid-state devices as replacements for incandescent light bulbs. The LED based bulb uses the normal Edison socket, but the LED and heat sink are placed on the far end of the bulb. The heat sink attaches to the bottom and outside of the bulb providing a structural base for the LED. Several alternative shapes for the light guide are provided to…