technologies available for licensing

Rensselaer Polytechnic Institute has a variety of technologies ranging from chemicals to lighting systems to algorithms and everything in-between. Rensselaer’s technologies can help you start a company or be a great addition to your current technology portfolio. To see what technologies are currently available for licensing at Rensselaer, please use the search below. If you have a technology need that Rensselaer’s technologies don’t currently solve, please reach out to IPO to discuss more your needs.

Use arrow keys to navigate
Displaying 11 - 20 of 26
The cross-section of an X-ray phase shift image is a thousand times greater than that of X-ray attenuation in soft tissue over the diagnostic energy range implying phase imaging can achieve a much higher signal-to-noise ratio and substantially lower radiation dose than attenuation-based X-ray imaging. Grating interferometry is a state of the art X-ray imaging approach, which…
Researcher Ge Wang and team created imaging systems and methods using excited nanoparticles coupled between CT and MRI to provide faster localization information for targeted, high resolution imaging. The study of biological systems is a complex pursuit that requires sufficient models and tools to measure responses to controlled changes in the system, however, there has been a…
Researchers at Rensselaer created a robotic assistant that is more versatile, cheaper, and which can be remotely controllable by anyone whose mobility is impaired. The disclosed robotic assistant generally comprises a motorized base and dual arm robot mounted thereon. The robotic assistant is designed to be utilized by mobility impaired individuals through a sip-and-blow…
Time of flight PET (TOF-PET) is an advance over traditional PET that uses the time difference in detection of the two photon events. TOF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. This technology uses a direct…
Computed Tomography (CT) is an important tool in diagnostic imaging. It plays a key role in diagnosis and intervention. Many advanced CT systems use wide detector arrays, multiple sources, andor very fast rotation speed, for important clinical applications (e.g., coronary artery and whole organ perfusion imaging). As a result, modern CT scanners are expensive and are typically…
This technology relates to sound absorption material. Reduction of noise in the environment is important for avoiding hearing loss and for improving psychological health in humans. This technology provides sound absorbing composition that includes particles embedded in a network of nanofibers. The composition contains pores ranging in size from less than 10 nm to more than…
Rensselaer researchers have developed a scanning electron microscopy based temperature mapping technique which employs a temperature sensitive electron signal for nano-scale resolution, non-contact measurement. It provides enhanced capabilities for investigating heat generation and transfer at the nanoscale to address long-standing issues related to power consumption, heat…
Coastal urban development has resulted in buildings and civil structures extending to the waters edge, which has significantly reduced the coastlines natural mechanisms for resisting erosion from wave action. There is a need to restore the ability of many coastlines to absorb wave energy and to restore native shoreline plants. To address this problem, this technology…
Rensselaer researchers have developed a water treatment system that is integrated with the faade of a building. The system includes a lens that forms part of the building faade and that guides sunlight through wastewater carrying conduits so that the wastewater is treated by the sunlight. The system therefore provides an inexpesive water treatment solution, but also…
This technology relates to the decorrelation of audio signals for use in surround sound techniques. Decorrelation improves listener envelopment and spatial immersion, but prior techniques suffer from unwanted timbre coloration and are computationally expensive. The present technology improves decorrelation by utilizing a pseudorandom sequence and a reciprocal of the…