Nanoparticles with Multiple Attached Polymer Assemblies and Use Thereof in Polymer Composites

This technology relates to synthesizing nanoparticles with multiple polymer assemblies attached. In one example, a first anchoring compound is attached to a nanoparticle, and a first group of monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another example, a first polymeric chain can be attached to the nanoparticle, where the first polymeric chain has been polymerized prior to attachment to the nanoparticle.

High thermal conductance thermal interface materials based on nanostructured metallic-network polymer composites

This technology relates to a high thermal conductivity thermal interface material that allows for the formation of an interconnected, spanning, high thermal conductivity network within the matrix of a polymeric material using nano particles. This material can yield two orders of magnitude higher thermal conductivities than the non-network counterpart, as well as factorial enhancements versus the state of the art polymer composites.

POLY(ARYLENE)-BASED ANION EXCHANGE POLYMER ELECTROLYTES

This technology relates to anion exchange membranes with enhanced stability to high pH environments including poly(arylene sulfone) or poly(arylene ketone) with anion exchange groups. Membranes according to this technology are simple to produce and have good mechanical properties, improved alkaline stability, as well as good anionic conductivity. This technology is particularly effective in fuel cell applications.