EPOXY-FUNCTIONAL POLYMERIC MICROBEADS

Several methods for the preparation of polymeric microbeads for chromatographic separations in the pharmaceutical industry have been developed over the past several decades. However, those methods often result in microbeads with a wide distribution of sizes. This invention results in more uniform particle size but also microbeads that are derived from multifunctional epoxy monomers and that have residual epoxy functionality on their surfaces.

METHOD OF TRANSFORMING CARBON NANOTUBES

Subjecting single-walled carbon nanotubes to a flash of light causes the material to ignite, producing a photo-acoustic effect. A simple camera flash demonstrates how heat confinement in nanostructures can lead to drastic structural effects and induce ignition under exposure to conditions where no reaction would be expected for macro scale materials. This technology could have multiple applications such as optoelectronic sensors and light triggered remote detonators.

CERAMIC MATRIX NANOCOMPOSITES CONTAINING CARBON NANOTUBES FOR ENHANCED MECHANICAL BEHAVIOR

Ceramics are used in applications requiring strength, hardness, light weight, and resistance to abrasion, erosion, and corrosion, at both ambient and elevated temperatures. However, traditional ceramic materials are characteristically brittle, and this brittleness limits their use. While reduction of brittleness has been obtained with fiber-reinforced ceramic matrix composites, there continues to be a need for materials that combine the desirable properties of ceramics with improved fracture toughness.

DITHIOCARBOXYLIC ESTER SYNTHETIC PROCESS

Living polymerization is a method by which polymers having a narrow molecular weight distribution may be obtained. Block copolymers may also be synthesized using the method. Block copolymers may display improved mechanical andor chemical properties over corresponding random copolymers. One promising method for free radical polymerization with living characteristics is reversible addition-fragmentation chain transfer (RAFT) polymerization.

Anion exchange membranes and polymers for use in same

Alkaline exchange membranes (AEMs), also called anion exchange membranes, allow transportation of anions (ex: OH-, Cl-, Br-, etc.) from the cathode to the anode in electrochemical reaction. AEMs are the most critical component of AEM fuel cells, water electrolysis, and certain batteries, sensors, and actuators. Many AEM materials tend to degrade easily under high alkaline. This technology comprises new chemical structures composed of styrene-butadiene block copolymer functionalized with quaternized ammonium groups toovercomes this alkaline stability issue.

High-performance cathode materials for lithium sulfur batteries from lignosulfonate

Existing batteries suffer from performance deficiencies, for example, they have limited power density and may drain rapidly when used for certain applications. By employing sulfur in their cathodes, LiS batteries can realize substantially greater energy densities than existing energy storage devices. Sulfur by itself is not a suitable electrode material due to its poor conductivity. Cathode materials for rechargeable secondary batteries such as LiS batteries may contain carbon as an amorphous conductive material.

POLY(ARYLENE)-BASED ANION EXCHANGE POLYMER ELECTROLYTES

This technology relates to anion exchange membranes with enhanced stability to high pH environments including poly(arylene sulfone) or poly(arylene ketone) with anion exchange groups. Membranes according to this technology are simple to produce and have good mechanical properties, improved alkaline stability, as well as good anionic conductivity. This technology is particularly effective in fuel cell applications.

PORE FORMATION BY IN SITU ETCHING OF NANOROD PEM FUEL CELL ELECTRODES

This technology relates to a process for creating electrodes in which high-surface area nanostructures are fabricated in situ by electrochemically etching a sacrificial scaffold material. Removing a material after it has been built into the cell opens up pores within the electrode whose size and density can be controlled, resulting in higher efficiency and Pt utilization.

PASSIVATED NANOPARTICLES, METHOD OF FABRICATION THEREOF, AND DEVICES INCORPORATING NANOPARTICLES

Semiconductor nanoparticles (also called quantum dots or nanocrystals) are generally used a lasing medium in a laser, as fluorescent tags in biological testing methods, and as electronics devices. However, these nanoparticles traditionally have high production costs and the methods used for synthesis are extremely toxic at high temperatures, posing safety risks during mass production. Additionally, it has been difficult to form nanoparticles of uniform size. This invention is directed to semiconductor nanoparticles having an elementally passivated surface.

DIFFERENTIAL PERMEOMETER

Material fluid permeability is an essential quality measurement in a variety of industries including textiles and papermaking. Permeability in itself is related to the porosity, density, and thickness of a material. Consistency of these material properties over time is required within a process as an indication of the quality. The purpose of permeability measurement is to accurately indicate the quality and consistency of a material product.