Novel nanocomposite fibers with a dramatic reduction in human plasma coagulation time

Rensselaer inventors created a nanocomposite fiber that promotes quick coagulation during hemorrhage resulting in reduced mobility and improved survival. The nanofiber composite is comprised of halloysite nanoclay, a natural occurring aluminosilicate nanoclay that exhibits a hollow tubular scroll structure. Hemostatic products on the market are effective in the short-term but might lack the ability to provide prolonged clotting activity. The disclosed technology overcomes these limitations as the nanoclay is physically imbedded onto the surface of the nanofibers.

Three-dimensional scaffolds, methods for fabricating the same, and methods of treating a peripheral nerve or spinal cord injury

Spinal Cord Injury (SCI) can result in catastrophic loss of function. In the US, 450,000 people live with SCI. Ongoing neuroscience research focuses on ways to improve nervous tissue regeneration, including development of innovative biomaterials. Implantable scaffolds composed of aligned polymer fibers have shown considerable promise in directing regenerating axons in vitro and in vivo. Highly aligned polymer fibers are necessary for neural tissue engineering applications to ensure that axonal extension occurs efficiently through a regenerating environment.