Electrical current-induced structural changes and chemical functionalization of carbon nanotubes

Many envisioned carbon nanotube (CNT) applications, such as device interconnections in integrated circuits, require directed growth of aligned CNTs, and low-resistance high-strength CNT junctions with tunable chemistry, stability, and electronic properties. However, forming CNT-CNT junctions on the substrate plane in a scalabe fashion, to enable in-plane device circuitry and interconnections, remains to be realized. This invention is based on the discovery that high current densities can slice, weld, and chemically functionalize multiwalled CNTs and alter their electrical properties.

CAPILLARITY INDUCED FORMATION OF TWO-DIMENSIONAL FOAMS IN ALIGNED NANOTUBE ARRAYS

Multi-walled carbon nanotubes have been produced by several different methods, including chemical vapor deposition and laser ablation. These nanotubes are either grown as a layer of aligned nanotubes or as intertwined, randomly oriented bundles of nanotubes. Carbon nanotubes have many potential applications due to their mechanical, electrical, and eletronic properties. However, the difficulty in asembling the nanotubes into desired complex architectures and patterns hinder some applications. This invention is directed to a carbon nanotube foam.

METHOD OF TRANSFORMING CARBON NANOTUBES

Subjecting single-walled carbon nanotubes to a flash of light causes the material to ignite, producing a photo-acoustic effect. A simple camera flash demonstrates how heat confinement in nanostructures can lead to drastic structural effects and induce ignition under exposure to conditions where no reaction would be expected for macro scale materials. This technology could have multiple applications such as optoelectronic sensors and light triggered remote detonators.