The rapid detection of pathogens and other microbial contaminants in food and biological samples is critical for ensuring the safety of consumers. Traditional methods to detect foodborne bacteria often rely on time-consuming growth in culture media, followed by isolation, biochemical identification, and sometimes serology. The enzyme-linked immunosorbent assay (ELISA) is the most prevalent antibody assay format used for pathogen detection in foods.

3D determination of cell chirality

Detecting differences at the cellular level is an ongoing problem which, if successfully addressed, could help solve several prevalent ailments, including cancers and prenatal diseases. Normal tissue function requires appropriate cell positioning and directional motion. This property, known as chirality, can be altered by genetic and environmental factors, leading to, for example, birth defects and tumor formation. Current methods to diagnose cancer are based on biomarkers, imaging, and analysis of tissue specimens.

Method, System, and Program Product for Controlling Chemical Reactions in a Digital Microfluidic System

The creation of miniature biochemical analysis systems using microfavrication technology is a recent significant development in the field of micofluidics. These systems offer advantages such as size reduction, power reduction, and increased reliability. However, current systems are tailored to a specific task, and thus are unable to be reconfigured and reprogramed to handly a variety of tasks.

Methods of identifying kinetically stable proteins

This invention is directed to a high-throughput process for screening proteins for kinetic stability.Kinetically stable proteins are trapped in one conformation and have a high barrier to unfolding, so they are resistant to aggregation and degradation and have a longer half-life.The ability to quickly and easily identify kinetically stable proteins would have a myriad of applications in the biotechnology industry, pharmaceutical industry, and in basic life science research.