Fabrication of a local concentrator system

Optical concentrators are used to focus sunlight onto a smaller area where a photovoltaic cell is located in order to reduce the total area (and cost) of PV cells. Concentrators often have problems assocated with higher temperatures and the need to be moved to track the movement of the sun. This technology utilizes double sided PVs and multiple optical elements as a concentrating system to avoid the need for a moving concentrator.

Pinned-contact oscillating liquid lens and imaging system

Existing liquid lense optical focusing strategies use liquid lenses after transient oscillations have dampened. The challenge with this existing liquid lens approach is two-fold. The first issue is to overcome the liquid inertia to enable a rapid state change, and the second, is to minimize the time it takes for transients induced during stoppage to Subside. Many systems use brute force activation methods to effect a shape change, creating undesired transient motion, which then necessitates a high-dissipative media to dampen them out.

Directed assembly of highly-organized carbon nanotube architectures

Carbon nanotubes are a nanostructured material that promises to have a wide range of applications. However, the present techniques used to build nanotube architectures have several deficiencies, such as the inability to precisely and controllably align the nanotubes. This invention is a novel and powerful method to assemble carbon nanotubes on planar substrates to build and control highly organized 1-to-3D architectures.

TRANSITION METAL SUPEROXIDES

Anionic polymerization processes variously termed living, controlled, or immortal are used to synthesize polymers having a narrow molecular weight distribution and low polydispersity (1.5). These processes are so named because polymerization generally occurs by addition of monomer units to a constant number of growing polymer chains until all monomer has been consumed; if more monomer is added, polymerization resumes.

THREE-DIMENSIONAL FACE-TO-FACE INTEGRATION ASSEMBLY

Todays integrated circuits often can include millions of integrated components and devices. However, for a given product, it sometimes is not possible to achieve on one chip all of the circuitry required. A major challenge then becomes the interconnection of the circuitry on mulitple chips or substrates while keeping the connection resistance low and path lengths short to minimize inductive and capacitive effects, permitting high speed operation. Thus, a structure and method of forming compact integrated circuit assemblies and interconnections is needed.

FABRICATING RADIATION-DETECTING STRUCTURES

Solid state radiation detectors, such as neutron detectors and gamma ray detectors, have been proposed as alternatives to gas-tube based detectors. Radiation-detecting hetero-structures may be formed by using physical etching processes, such as reactive ion etching (RIE) to form trenches in a semiconductor substrate, followed by using chemical vapor deposition (CVD) to deposit radiation-detecting material within the formed trenches.

ORGANIC PHOSPHOR-FUNCTIONALIZED NANOPARTICLES AND COMPOSITIONS COMPRISING THE SAME

This technology relates to nanoparticles that are particularly beneficial in optical systems. The nanoparticles include phosphor-functionalized particles with an inorganic nanoparticle core, surface polymer brushes in the form of long and short-chain polymers bonded to the inorganic nanoparticle core, and organic phosphors bonded to the inorganic nanoparticle core or the short-chain polymers. Applications for this technology include LEDs, lighting devices, fixtures, efficient light conversion materials, etc.

Silicone Based Nanocomposites Including Inorganic Nanoparticles and Their Methods of Manufacture and Use

Rensselaer researchers have developed a thermodynamically stable dispersion technology resulting in thick, transparent, high refractive index silicone nanocomposites that increase the light efficiency of LEDs and improve the emitted light color quality. The nanocomposites could also be processed as transparent bulk material with high filler loading, which is essential for optical, magnetic and biomedical applications.

High thermal conductance thermal interface materials based on nanostructured metallic-network polymer composites

This technology relates to a high thermal conductivity thermal interface material that allows for the formation of an interconnected, spanning, high thermal conductivity network within the matrix of a polymeric material using nano particles. This material can yield two orders of magnitude higher thermal conductivities than the non-network counterpart, as well as factorial enhancements versus the state of the art polymer composites.

Nanofilled Polymeric Nanocomposites with Tunable Index of Refraction

This technology relates to nanofilled polymeric materials with a tunable refractive index without increased scattering or loss. The tunability allows the creation of hybrid nanocomposites that combine the advantages of organic polymers (low weight, flexibility, good impact resistance, and excellent processability) and inorganic materials (high refractive index, good chemical resistance and high thermal stability).